See full publication list with links here: http://sose.ucsd.edu/MyPDFs
9129767 P6BBM9XF 1 apa 50 date desc year Mazloff 18 https://mmazloff.scrippsprofiles.ucsd.edu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A100%2C%22request_next%22%3A50%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22463JWPSP%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dinh%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDinh%2C%20A.%2C%20Rignot%2C%20E.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Fenty%2C%20I.%20%282024%29.%20Modeling%20Ocean%20Heat%20Transport%20to%20the%20Grounding%20Lines%20of%20Pine%20Island%2C%20Thwaites%2C%20Smith%2C%20and%20Kohler%20Glaciers%2C%20West%20Antarctica.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%2819%29%2C%20e2024GL110078.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL110078%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL110078%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Modeling%20Ocean%20Heat%20Transport%20to%20the%20Grounding%20Lines%20of%20Pine%20Island%2C%20Thwaites%2C%20Smith%2C%20and%20Kohler%20Glaciers%2C%20West%20Antarctica%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andy%22%2C%22lastName%22%3A%22Dinh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%22%2C%22lastName%22%3A%22Rignot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Fenty%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Pine%20Island%2C%20Thwaites%2C%20Smith%2C%20and%20Kohler%20glaciers%20in%20the%20Amundsen%20Sea%20Embayment%20%28ASE%29%20sector%20of%20West%20Antarctica%20experience%20rapid%20mass%20loss%20and%20grounding%20line%20retreat%20due%20to%20enhanced%20ocean%20thermal%20forcing%20from%20Circumpolar%20Deep%20Water%20%28CDW%29%20reaching%20the%20grounding%20lines.%20We%20use%20simulated%20Lagrangian%20particles%20advected%20with%20a%20looping%201%5Cu00a0year%20output%20from%20the%20Southern%20Ocean%20high%5Cu2010resolution%20model%20to%20backtrack%20the%20transport%20and%20cooling%20of%20CDW%20to%20these%20glaciers.%20For%20the%20simulated%20year%202005%5Cu20132006%2C%20we%20find%20that%20the%20median%20time%20needed%20to%20reach%20the%20grounding%20lines%20from%20the%20edge%20of%20the%20ASE%20is%203%5Cu00a0years.%20In%20addition%2C%20the%20Antarctic%20Coastal%20Current%20contributes%20an%20equal%20number%20of%20particles%20as%20off%5Cu2010shelf%20sources%20to%20the%20grounding%20lines%20of%20Pine%20Island%20and%20Thwaites.%20For%20CDW%20coming%20from%20off%5Cu2010shelf%2C%20results%20from%20SOhi%20indicate%20that%2025%25%5Cu201366%25%20of%20the%20cooling%20occurs%20within%20ice%20shelf%20cavities.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20glaciers%20in%20the%20Amundsen%20Sea%20Embayment%20%28ASE%29%20sector%20of%20West%20Antarctica%20are%20contributing%20rapidly%20to%20sea%20level%20rise%20in%20response%20to%20enhanced%20melt%20by%20warm%2C%20salty%20Circumpolar%20Deep%20Water%20%28CDW%29.%20We%20use%20an%20ocean%20numerical%20model%20to%20trace%20the%20sources%2C%20pathways%2C%20and%20cooling%20of%20warm%20waters%20to%20reach%20glacier%20grounding%20lines.%20We%20find%20that%20it%20takes%20multiple%20years%20for%20off%5Cu2010shelf%20perturbations%20to%20reach%20the%20glaciers%20and%20that%20the%20colder%20Antarctic%20Coastal%20Current%20contributes%20the%20same%20amount%20of%20water%20to%20the%20grounding%20lines%20of%20Thwaites%20and%20Pine%20Island%20glaciers%20as%20off%5Cu2010shelf%20CDW%20sources.%20The%20model%20also%20reveals%20that%20half%20of%20the%20cooling%20of%20CDW%20occurs%20under%20the%20ice%20shelves%2C%20which%20is%20an%20effect%20not%20accounted%20for%20in%20most%20models%20used%20for%20projecting%20sea%20level%20rise.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20From%20a%202005%5Cu20132006%20simulation%2C%20it%20takes%20about%203%5Cu00a0years%20for%20water%20to%20reach%20the%20grounding%20lines%20from%20the%20edge%20of%20the%20Amundsen%20Sea%20Embayment%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20simulation%20shows%20the%20Antarctic%20Coastal%20Current%20contributing%20equal%20amounts%20of%20water%20to%20Pine%20Island%20and%20Thwaites%20as%20off%5Cu2010shelf%20sources%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20SOhi%20results%20indicate%20that%201%5C%2F4%20to%202%5C%2F3%20of%20the%20cooling%20between%20the%20shelf%20break%20and%20the%20grounding%20lines%20occurs%20within%20the%20cavities%22%2C%22date%22%3A%222024-10-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024GL110078%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024GL110078%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-10-22T17%3A52%3A12Z%22%7D%7D%2C%7B%22key%22%3A%22R2EE9Z9Z%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chu%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-21%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChu%2C%20W.%20U.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Verdy%2C%20A.%2C%20Purkey%2C%20S.%20G.%2C%20%26amp%3B%20Cornuelle%2C%20B.%20D.%20%282024%29.%20Optimizing%20observational%20arrays%20for%20biogeochemistry%20in%20the%20tropical%20Pacific%20by%20estimating%20correlation%20lengths.%20%3Ci%3ELimnology%20and%20Oceanography%3A%20Methods%3C%5C%2Fi%3E%2C%20lom3.10641.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Flom3.10641%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Flom3.10641%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Optimizing%20observational%20arrays%20for%20biogeochemistry%20in%20the%20tropical%20Pacific%20by%20estimating%20correlation%20lengths%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Winnie%20U.%22%2C%22lastName%22%3A%22Chu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ariane%22%2C%22lastName%22%3A%22Verdy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20G.%22%2C%22lastName%22%3A%22Purkey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Global%20climate%20change%20has%20impacted%20ocean%20biogeochemistry%20and%20physical%20dynamics%2C%20causing%20increases%20in%20acidity%20and%20temperature%2C%20among%20other%20phenomena.%20These%20changes%20can%20lead%20to%20deleterious%20effects%20on%20marine%20ecosystems%20and%20communities%20that%20rely%20on%20these%20ecosystems%20for%20their%20livelihoods.%20To%20better%20quantify%20these%20changes%2C%20an%20array%20of%20floats%20fitted%20with%20biogeochemical%20sensors%20%28BGC%5Cu2010Argo%29%20is%20being%20deployed%20throughout%20the%20ocean.%20This%20paper%20presents%20an%20algorithm%20for%20deriving%20a%20deployment%20strategy%20that%20maximizes%20the%20information%20captured%20by%20each%20float.%20The%20process%20involves%20using%20a%20model%20solution%20as%20a%20proxy%20for%20the%20true%20ocean%20state%20and%20carrying%20out%20an%20iterative%20process%20to%20identify%20optimal%20float%20deployment%20locations%20for%20constraining%20the%20model%20variance.%20As%20an%20example%2C%20we%20use%20the%20algorithm%20to%20optimize%20the%20array%20for%20observing%20ocean%20surface%20dissolved%20carbon%20dioxide%20concentrations%20%28pCO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20in%20a%20region%20of%20strong%20air%5Cu2013sea%20gas%20exchange%20currently%20being%20targeted%20for%20BGC%5Cu2010Argo%20float%20deployment.%20We%20conclude%20that%2054%25%20of%20the%20pCO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20variability%20in%20the%20analysis%20region%20could%20be%20sampled%20by%20an%20array%20of%2050%20Argo%20floats%20deployed%20in%20specified%20locations.%20This%20implies%20a%20relatively%20coarse%20average%20spacing%2C%20though%20we%20find%20the%20optimal%20spacing%20is%20nonuniform%2C%20with%20a%20denser%20sampling%20being%20required%20in%20the%20eastern%20equatorial%20Pacific.%20We%20also%20show%20that%20this%20method%20could%20be%20applied%20to%20determine%20the%20optimal%20float%20deployment%20along%20ship%20tracks%2C%20matching%20the%20logistics%20of%20real%20float%20deployment.%20We%20envision%20this%20software%20package%20to%20be%20a%20helpful%20resource%20in%20ocean%20observational%20design%20anywhere%20in%20the%20global%20oceans.%22%2C%22date%22%3A%222024-08-21%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Flom3.10641%22%2C%22ISSN%22%3A%221541-5856%2C%201541-5856%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Faslopubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Flom3.10641%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%22P6BBM9XF%22%2C%229HSCH4RV%22%2C%22PMTDF67G%22%5D%2C%22dateModified%22%3A%222024-10-14T17%3A12%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22R2952FC5%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Barnard%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-05%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBarnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Ha%26%23xEB%3Bntjens%2C%20N.%2C%20Orrico%2C%20C.%2C%20Chamberlain%2C%20P.%2C%20Frouin%2C%20R.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Tan%2C%20J.%20%282024%29.%20A%20float-based%20Ocean%20color%20vicarious%20calibration%20program.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201373540.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1373540%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1373540%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20float-based%20Ocean%20color%20vicarious%20calibration%20program%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22Ha%5Cu00ebntjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%5D%2C%22abstractNote%22%3A%22Ocean%20color%20satellites%20require%20a%20procedure%20known%20as%20System%20Vicarious%20Calibration%20%28SVC%29%20after%20launch%20as%20the%20pre-launch%20and%20on-orbit%20calibration%20accuracy%20is%20insufficient.%20The%20current%20approach%20for%20determination%20of%20post-launch%20SVC%20uses%20a%20single%20fixed%20measurement%20location%20and%20may%20be%20susceptible%20to%20unexpected%20biases%20in%20satellite%20processing%20algorithms.%20Here%20we%20describe%20a%20novel%20SVC%20program%20which%20is%20based%20on%20a%20high%20resolution%20and%20high%20accuracy%20radiometric%20system%20integrated%20with%20an%20autonomous%20profiling%20float%20%28providing%20a%20buoyancy%20engine%2C%20physical%20observations%2C%20and%20communication%29.%20This%20float%20%2B%20radiometer%20%28HyperNav%29%20system%20can%20be%20shipped%20via%20air%2C%20land%2C%20ocean%20and%20is%20deployable%20from%20small%20boats.%20This%20SVC%20program%20relies%20on%20multiple%20deployment%20sites%20with%20associated%20facilities%20to%20collect%20a%20significant%20amount%20of%20SVC%20quality%20data%20in%20a%20relatively%20short%20time.%20It%20has%20centralized%20logistics%20and%20command-and-control%20centers%20ensuring%20easy%20access%20to%20information%20regarding%20the%20status%20of%20each%20asset%20and%20to%20ensure%20floats%20stay%20within%20a%20certain%20ocean%20area.%20The%20development%20of%20the%20program%20has%20been%20associated%20with%20the%20launch%20of%20NASA%5Cu2019s%20PACE%20satellite%20and%20has%20been%20executed%20by%20academic%20institutions%20in%20collaboration%20with%20an%20industrial%20partner.%20Other%20approaches%20for%20a%20future%20float-based%20operational%20SVC%20program%20are%20discussed.%22%2C%22date%22%3A%222024-8-5%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1373540%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1373540%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-08-29T17%3A45%3A34Z%22%7D%7D%2C%7B%22key%22%3A%224CU8RNEI%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chamberlain%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChamberlain%2C%20P.%2C%20Frouin%2C%20R.%20J.%2C%20Tan%2C%20J.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Barnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Ha%26%23xEB%3Bntjens%2C%20N.%2C%20%26amp%3B%20Orrico%2C%20C.%20%282024%29.%20Selecting%20HyperNav%20deployment%20sites%20for%20calibrating%20and%20validating%20PACE%20ocean%20color%20observations.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201333851.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1333851%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1333851%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Selecting%20HyperNav%20deployment%20sites%20for%20calibrating%20and%20validating%20PACE%20ocean%20color%20observations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%20J.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22Ha%5Cu00ebntjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%5D%2C%22abstractNote%22%3A%22A%20novel%20ocean%20profiling%20float%20system%20for%20calibrating%20and%20validating%20satellite-based%20ocean%20color%20observations%20has%20been%20developed%20and%20tested.%20The%20float-based%20radiometric%20sampling%20system%2C%20herein%20referred%20to%20as%20HyperNav%2C%20is%20complementary%20to%20traditional%20moored%20in-situ%20observing%20systems%20and%20provides%20additional%20capability%20due%20to%20the%20relatively%20small%20platform%20size%20and%20high%20radiometric%20accuracy%20that%20allows%20for%20opportunistic%20deployments%20at%20locations%20during%20seasons%20and%20conditions%20that%20are%20best%20for%20ocean%20color%20observations.%20The%20purpose%20of%20this%20study%20is%20to%20optimize%20the%20deployment%20locations%20of%20an%20array%20of%20HyperNav%20systems%20to%20support%20the%20Plankton%2C%20Aerosol%2C%20Cloud%2C%20ocean%20Ecosystem%20%28PACE%29%20mission%20by%20performing%20System%20Vicarious%20Calibration%20%28SVC%29%20observations.%20Specifically%2C%20we%20present%20the%20development%20of%20logistical%20and%20scientific%20criteria%20for%20selecting%20suitable%20sites%20for%20developing%20an%20SVC%20network%20of%20profiling-float-based%20radiometric%20systems%20capable%20of%20calibrating%20and%20validating%20ocean%20color%20observations.%20As%20part%20of%20the%20analyses%20described%20in%20this%20paper%2C%20we%20have%20synthetically%20deployed%20HyperNav%20at%20potential%20US-based%20and%20international%20sites%2C%20including%3A%20north%20of%20Crete%20island%3B%20south-east%20of%20Bermuda%20island%3B%20south%20of%20Puerto%20Rico%20island%3B%20southwest%20of%20Port%20Hueneme%2C%20CA%3B%20west%20of%20Monterey%2C%20CA%3B%20west%20of%20Kona%2C%20HI%3B%20and%20south-west%20of%20Tahiti%20island.%20The%20synthetic%20analyses%20identified%20Kona%2C%20Puerto%20Rico%2C%20Crete%2C%20and%20Tahiti%20as%20promising%20SVC%20sites.%20All%20sites%20considered%20are%20suitable%20for%20generating%20a%20significant%20number%20of%20validation%20match-ups.%20Optimally%20deploying%20HyperNav%20systems%20at%20these%20sites%20during%20the%20PACE%20post-launch%20SVC%20campaign%20is%20expected%20to%20cost-effectively%20provide%20a%20large%20number%20of%20SVC%20match-ups%20to%20fulfill%20the%20PACE%20calibration%20requirements.%22%2C%22date%22%3A%222024-7-17%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1333851%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1333851%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-09-04T17%3A43%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22AETIFK3T%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Barnard%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBarnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Ha%26%23xEB%3Bntjens%2C%20N.%2C%20Orrico%2C%20C.%2C%20Frouin%2C%20R.%2C%20Tan%2C%20J.%2C%20Klumpp%2C%20J.%2C%20Dewey%2C%20M.%2C%20Walter%2C%20D.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Chamberlain%2C%20P.%20%282024%29.%20Design%20and%20verification%20of%20a%20highly%20accurate%20in-situ%20hyperspectral%20radiometric%20measurement%20system%20%28HyperNav%29.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201369769.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1369769%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1369769%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Design%20and%20verification%20of%20a%20highly%20accurate%20in-situ%20hyperspectral%20radiometric%20measurement%20system%20%28HyperNav%29%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22Ha%5Cu00ebntjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Justin%22%2C%22lastName%22%3A%22Klumpp%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Dewey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Walter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%5D%2C%22abstractNote%22%3A%22Hyperspectral%20optical%20observations%20of%20the%20Earth%5Cu2019s%20surface%20oceans%20from%20space%20offer%20a%20means%20to%20improve%20our%20understanding%20of%20ocean%20biology%20and%20biogeochemistry.%20NASA%5Cu2019s%20Plankton%2C%20Aerosol%2C%20Cloud%2C%20ocean%20Ecosystem%20%28PACE%29%20satellite%20mission%2C%20which%20includes%20a%20hyperspectral%20ocean%20color%20instrument%20%28OCI%29%2C%20will%20provide%20radiometric%20observations%20of%20surface%20ocean%20with%20near%20continuous%20spectral%20resolution%20across%20the%20near%20UV%20to%20NIR%20range.%20Maintaining%20sufficient%20accuracy%20over%20the%20lifetime%20of%20satellite%20ocean%20color%20missions%20requires%20a%20robust%20program%20for%20system%20vicarious%20calibration%20%28SVC%29%20and%20product%20validation.%20The%20system%20vicarious%20calibration%20process%20combines%20satellite%20sensor%20data%20with%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20radiometric%5C%2Foptical%20measurements%20to%20remove%20potential%20biases%20due%20to%20the%20combined%20errors%20from%20both%20satellite%20radiometric%20sensor%20calibration%20and%20atmospheric%20correction.%20As%20such%2C%20high%20accuracy%2C%20high-spectral%20resolution%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20radiometric%20measurements%20are%20required%20to%20provide%20a%20principal%20source%20of%20truth%20for%20the%20satellite-derived%20products.%20To%20meet%20the%20requirements%2C%20a%20novel%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20radiometric%20system%2C%20called%20HyperNav%2C%20has%20been%20developed%2C%20rigorously%20characterized%20and%20field%20tested.%20Key%20attributes%20of%20HyperNav%20are%20dual%20upwelling%20radiance%20heads%20coupled%20to%20individual%20spectrometers%2C%20spectral%20resolution%20of%20%5Cu223c2.2%5Cu00a0nm%20%28full%20width%2C%20half-maximum%29%20across%20320%5Cu2013900%5Cu00a0nm%2C%20integrated%20shutter%20systems%20for%20dark%20measurements%2C%20and%20integrated%20tilt%20and%20pressure%20sensors.%20The%20HyperNav%20operational%20modes%20include%20traditional%20profiling%20and%20surface%20modes%2C%20as%20well%20as%20integration%20with%20an%20autonomous%20profiling%20float%20for%20unattended%20deployment%2C%20offering%20a%20new%20capability%20for%20a%20network%20of%20autonomous%20platforms%20to%20support%20the%20long-term%20needs%20for%20hyperspectral%20ocean%20color%20remote%20sensing%20observations.%20This%20paper%20describes%20the%20HyperNav%20design%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20operational%20modes%2C%20and%20field%20verification%20results.%22%2C%22date%22%3A%222024-6-28%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1369769%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1369769%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-07-30T18%3A52%3A56Z%22%7D%7D%2C%7B%22key%22%3A%22TSKBZJ87%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hsu%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHsu%2C%20T.-Y.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Gille%2C%20S.%20T.%2C%20Freilich%2C%20M.%20A.%2C%20Sun%2C%20R.%2C%20%26amp%3B%20Cornuelle%2C%20B.%20D.%20%282024%29.%20Response%20of%20sea%20surface%20temperature%20to%20atmospheric%20rivers.%20%3Ci%3ENature%20Communications%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%281%29%2C%205018.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-48486-9%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-48486-9%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Response%20of%20sea%20surface%20temperature%20to%20atmospheric%20rivers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tien-Yiao%22%2C%22lastName%22%3A%22Hsu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mara%20A.%22%2C%22lastName%22%3A%22Freilich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rui%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%2C%20responsible%20for%20extreme%20weather%20conditions%2C%20are%20mid-latitude%20systems%20that%20can%20cause%20significant%20damage%20to%20coastal%20areas.%20While%20forecasting%20ARs%20beyond%20two%20weeks%20remains%20a%20challenge%2C%20past%20research%20suggests%20potential%20benefits%20may%20come%20from%20properly%20accounting%20for%20the%20changes%20in%20sea%20surface%20temperature%20%28SST%29%20through%20air%5Cu2013sea%20interactions.%20In%20this%20paper%2C%20we%20investigate%20the%20impact%20of%20ARs%20on%20SST%20over%20the%20North%20Pacific%20by%20analyzing%2025%20years%20of%20ocean%20reanalysis%20data%20using%20an%20SST%20budget%20equation.%20We%20show%20that%20in%20the%20region%20of%20strong%20ocean%20modification%2C%20ocean%20dynamics%20can%20offset%20over%20100%25%20of%20the%20anomalous%20SST%20warming%20that%20would%20otherwise%20arise%20from%20atmospheric%20forcing.%20Among%20all%20ocean%20processes%2C%20ageostrophic%20advection%20and%20vertical%20mixing%20%28diffusion%20and%20entrainment%29%20are%20the%20most%20important%20factors%20in%20modifying%20the%20SST%20tendency%20response.%20The%20SST%20tendency%20response%20to%20ARs%20varies%20spatially.%20For%20example%2C%20in%20coastal%20California%2C%20the%20driver%20of%20enhanced%20SST%20warming%20is%20the%20reduction%20in%20ageostrophic%20advection%20due%20to%20anomalous%20southerly%20winds.%20Moreover%2C%20there%20is%20a%20large%20region%20where%20the%20SST%20shows%20a%20warming%20response%20to%20ARs%20due%20to%20the%20overall%20reduction%20in%20the%20total%20clouds%20and%20subsequent%20increase%20in%20total%20incoming%20shortwave%20radiation.%22%2C%22date%22%3A%222024-06-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-024-48486-9%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-024-48486-9%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22TFFGCZNI%22%2C%22P6BBM9XF%22%2C%22NWLRM2I3%22%5D%2C%22dateModified%22%3A%222024-07-15T21%3A12%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22UPXNH9FQ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Narayanan%20et%20al.%22%2C%22parsedDate%22%3A%222024-05-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENarayanan%2C%20A.%2C%20Roquet%2C%20F.%2C%20Gille%2C%20S.%20T.%2C%20G%26%23xFC%3Blk%2C%20B.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Silvano%2C%20A.%2C%20%26amp%3B%20Naveira%20Garabato%2C%20A.%20C.%20%282024%29.%20Ekman-driven%20salt%20transport%20as%20a%20key%20mechanism%20for%20open-ocean%20polynya%20formation%20at%20Maud%20Rise.%20%3Ci%3EScience%20Advances%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%2818%29%2C%20eadj0777.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.adj0777%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fsciadv.adj0777%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ekman-driven%20salt%20transport%20as%20a%20key%20mechanism%20for%20open-ocean%20polynya%20formation%20at%20Maud%20Rise%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aditya%22%2C%22lastName%22%3A%22Narayanan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabien%22%2C%22lastName%22%3A%22Roquet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Birte%22%2C%22lastName%22%3A%22G%5Cu00fclk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Silvano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%20C.%22%2C%22lastName%22%3A%22Naveira%20Garabato%22%7D%5D%2C%22abstractNote%22%3A%22Open-ocean%20polynyas%20formed%20over%20the%20Maud%20Rise%2C%20in%20the%20Weddell%20Sea%2C%20during%20the%20winters%20of%202016%5Cu20132017.%20Such%20polynyas%20are%20rare%20events%20in%20the%20Southern%20Ocean%20and%20are%20associated%20with%20deep%20convection%2C%20affecting%20regional%20carbon%20and%20heat%20budgets.%20Using%20an%20ocean%20state%20estimate%2C%20we%20found%20that%20during%202017%2C%20early%20sea%20ice%20melting%20occurred%20in%20response%20to%20enhanced%20vertical%20mixing%20of%20heat%2C%20which%20was%20accompanied%20by%20mixing%20of%20salt.%20The%20melting%20sea%20ice%20compensated%20for%20the%20vertically%20mixed%20salt%2C%20resulting%20in%20a%20net%20buoyancy%20gain.%20An%20additional%20salt%20input%20was%20then%20necessary%20to%20destabilize%20the%20upper%20ocean.%20This%20came%20from%20a%20hitherto%20unexplored%20polynya-formation%20mechanism%3A%20an%20Ekman%20transport%20of%20salt%20across%20a%20jet%20girdling%20the%20northern%20flank%20of%20the%20Maud%20Rise.%20Such%20transport%20was%20driven%20by%20intensified%20eastward%20surface%20stresses%20during%202015%5Cu20132018.%20Our%20results%20illustrate%20how%20highly%20localized%20interactions%20between%20wind%2C%20ocean%20flow%20and%20topography%20can%20trigger%20polynya%20formation%20in%20the%20open%20Southern%20Ocean.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Local-scale%20Ekman%20dynamics%20enabled%20the%20formation%20of%20a%20rare%20open-ocean%20polynya%20within%20the%20Antarctic%20sea%20ice%20field%20of%202016%20and%202017.%22%2C%22date%22%3A%222024-05-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fsciadv.adj0777%22%2C%22ISSN%22%3A%222375-2548%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fsciadv.adj0777%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-06-10T20%3A52%3A09Z%22%7D%7D%2C%7B%22key%22%3A%229K4TVMSS%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETan%2C%20J.%2C%20Frouin%2C%20R.%2C%20H%26%23xE4%3Bentjens%2C%20N.%2C%20Barnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Chamberlain%2C%20P.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Orrico%2C%20C.%20%282024%29.%20Reconstructing%20hyper-spectral%20downwelling%20irradiance%20from%20multi-spectral%20measurements.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201335627.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1335627%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1335627%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Reconstructing%20hyper-spectral%20downwelling%20irradiance%20from%20multi-spectral%20measurements%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22H%5Cu00e4entjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matt%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%5D%2C%22abstractNote%22%3A%22Checking%20the%20radiometric%20calibration%20of%20satellite%20hyper-spectral%20sensors%20such%20as%20the%20PACE%20Ocean%20Color%20Instrument%20%28OCI%29%20while%20they%20operate%20in%20orbit%20and%20evaluating%20remote%20sensing%20reflectance%2C%20the%20basic%20variable%20from%20which%20a%20variety%20of%20optical%20and%20biogeochemical%20ocean%20properties%20can%20be%20derived%2C%20requires%20measuring%20upwelling%20radiance%20just%20above%20the%20surface%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20downwelling%20planar%20irradiance%20reaching%20the%20surface%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20For%20this%2C%20the%20current%20HyperNav%20systems%20measure%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%20about%202%5Cu00a0nm%20spectral%20resolution%20in%20the%20ultraviolet%20to%20near%20infrared%2C%20but%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20only%20four%2010%5Cu00a0nm%20wide%20spectral%20bands%20centered%20on%20412%2C%20489%2C%20555%2C%20and%20705%5Cu00a0nm.%20In%20this%20study%2C%20the%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20data%20acquired%20in%20these%20spectral%20bands%20in%20clear%20sky%20conditions%20are%20used%20to%20reconstruct%20via%20a%20multi-linear%20regression%20model%20the%20hyper-spectral%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20signal%20at%200.5%5Cu00a0nm%20resolution%20from%20315%20to%20900%5Cu00a0nm%2C%20the%20OCI%20spectral%20range%2C%20allowing%20an%20estimate%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%20the%20HyperNav%2C%20OCI%2C%20and%20other%20sensors%5Cu2019%20resolutions.%20After%20correction%20of%20gaseous%20absorption%20and%20normalization%20by%20the%20top-of-atmosphere%20incident%20solar%20flux%2C%20the%20atmospheric%20diffuse%20transmittance%20is%20expressed%20as%20a%20linear%20combination%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20measured%20in%20those%204%20spectral%20bands.%20Based%20on%20simulations%20for%20Sun%20zenith%20angles%20from%200%20to%2075%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b0%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20a%20wide%20range%20of%20%28i.e.%2C%20expected%29%20atmospheric%2C%20surface%2C%20and%20water%20conditions%2C%20the%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20spectrum%20is%20reconstructed%20with%20a%20bias%20of%20less%20than%200.4%25%20in%20magnitude%20and%20an%20RMS%20error%20%28RMSE%29%20ranging%20from%200%25%20to%202.5%25%2C%20depending%20on%20wavelength.%20The%20largest%20errors%20occur%20in%20spectral%20regions%20with%20strong%20gaseous%20absorption.%20In%20the%20presence%20of%20typical%20noise%20on%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20measurements%20and%20uncertainties%20on%20the%20ancillary%20variables%2C%20the%20bias%20and%20RMSE%20become%20%5Cu22122.5%25%20and%207.0%25%2C%20respectively.%20Using%20a%20General%20Additive%20Model%20with%20coefficients%20depending%20on%20Sun%20zenith%20angle%20and%20aerosol%20optical%20thickness%20at%20550%5Cu00a0nm%20improves%20statistical%20performance%20in%20the%20absence%20of%20noise%2C%20especially%20in%20the%20ultraviolet%2C%20but%20provides%20similar%20performance%20on%20noisy%20data%2C%20indicating%20more%20sensitivity%20to%20noise.%20Adding%20spectral%20bands%20in%20the%20ultraviolet%2C%20e.g.%2C%20centered%20on%20325%2C%20340%2C%20and%20380%5Cu00a0nm%2C%20yields%20marginally%20more%20accurate%20results%20in%20the%20ultraviolet%2C%20due%20to%20uncertainties%20in%20the%20gaseous%20transmittance.%20Comparisons%20between%20the%20measured%20and%20reconstructed%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20spectra%20acquired%20by%20the%20MOBY%20spectroradiometer%20show%20agreement%20within%20predicted%20uncertainties%2C%20i.e.%2C%20biases%20less%20than%202%25%20in%20magnitude%20and%20RMS%20differences%20less%20than%205%25.%20Reconstruction%20can%20also%20be%20achieved%20accurately%20with%20other%20sets%20of%20spectral%20bands%20and%20extended%20to%20cloudy%20conditions%20since%20cloud%20optical%20properties%2C%20like%20aerosol%20properties%2C%20tend%20to%20vary%20regularly%20with%20wavelength.%20These%20results%20indicate%20that%20it%20is%20sufficient%2C%20for%20many%20scientific%20applications%20involving%20hyper-spectral%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20to%20measure%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20a%20few%20coarse%20spectral%20bands%20in%20the%20ultraviolet%20to%20near%20infrared%20and%20reconstruct%20the%20hyperspectral%20signal%20using%20the%20proposed%20multivariate%20linear%20modeling.%22%2C%22date%22%3A%222024-3-14%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1335627%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1335627%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A46%3A10Z%22%7D%7D%2C%7B%22key%22%3A%222IKBMGJX%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dinh%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDinh%2C%20A.%2C%20Rignot%2C%20E.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Fenty%2C%20I.%20%282024%29.%20Southern%20Ocean%20High%26%23x2010%3BResolution%20%28SOhi%29%20Modeling%20Along%20the%20Antarctic%20Ice%20Sheet%20Periphery.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%283%29%2C%20e2023GL106377.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL106377%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL106377%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Southern%20Ocean%20High%5Cu2010Resolution%20%28SOhi%29%20Modeling%20Along%20the%20Antarctic%20Ice%20Sheet%20Periphery%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andy%22%2C%22lastName%22%3A%22Dinh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%22%2C%22lastName%22%3A%22Rignot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Fenty%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Southern%20Ocean%20plays%20a%20major%20role%20in%20controlling%20the%20evolution%20of%20Antarctic%20glaciers%20and%20in%20turn%20their%20impact%20on%20sea%20level%20rise.%20We%20present%20the%20Southern%20Ocean%20high%5Cu2010resolution%20%28SOhi%29%20simulation%20of%20the%20MITgcm%20ocean%20model%20to%20reproduce%20ice%5Cu2010ocean%20interaction%20at%201%5C%2F24%5Cu00b0%20around%20Antarctica%2C%20including%20all%20ice%20shelf%20cavities%20and%20oceanic%20tides.%20We%20evaluate%20the%20model%20accuracy%20on%20the%20continental%20shelf%20using%20Marine%20Mammals%20Exploring%20the%20Oceans%20Pole%20to%20Pole%20data%20and%20compare%20the%20results%20with%20three%20other%20MITgcm%20ocean%20models%20%28ECCO4%2C%20SOSE%2C%20and%20LLC4320%29%20and%20the%20ISMIP6%20temperature%20reconstruction.%20Below%20400%5Cu00a0m%2C%20all%20the%20models%20exhibit%20a%20warm%20bias%20on%20the%20continental%20shelf%2C%20but%20the%20bias%20is%20reduced%20in%20the%20high%5Cu2010resolution%20simulations.%20We%5Cu00a0hypothesize%20some%20of%20the%20bias%20is%20due%20to%20an%20overestimation%20of%20sea%20ice%20cover%2C%20which%20reduces%20heat%20loss%20to%20the%20atmosphere.%20Both%20high%5Cu2010resolution%20and%20accurate%20bathymetry%20are%20required%20to%20improve%20model%20accuracy%20around%20Antarctica.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Warm%20water%20from%20the%20Southern%20Ocean%20melts%20the%20glaciers%20and%20ice%20shelves%20around%20the%20Antarctic%20margin%2C%20leading%20to%20glacier%20de%5Cu2010stabilization%2C%20and%20sea%20level%20rise.%20We%20present%20the%20Southern%20Ocean%20high%5Cu2010resolution%20%28SOhi%29%20model%20to%20better%20represent%20ocean%20circulation%20and%20ice%5Cu2010ocean%20interaction%20around%20Antarctica.%20We%20assess%20the%20accuracy%20of%20SOhi%20with%20in%20situ%20data%20from%20marine%20mammals%20and%20compare%20the%20results%20with%20three%20other%20ocean%20model%20simulations%20and%20to%20a%20baseline%20reference.%20All%20model%20results%20are%20slightly%20too%20warm%20on%20the%5Cu00a0continental%20shelf%2C%20but%20the%20higher%5Cu2010resolution%20models%20yield%20colder%20waters%20in%20better%20agreement%20with%20observations.%20We%20attribute%20the%20warm%20bias%20to%20an%20overestimation%20of%20the%20sea%20ice%20cover%20in%20the%20ocean%20models.%20An%20improved%20bathymetry%20also%20significantly%20improves%20model%20accuracy%20in%20Antarctica.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20High%5Cu2010resolution%20ocean%20models%20with%20more%20complete%20physics%20are%20in%20better%20agreement%20with%20in%20situ%20ocean%20data%20than%20coarser%20resolution%20models%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Accurate%20bathymetry%20is%20essential%20to%20capture%20circulation%20pathways%20and%20warm%20water%20intrusions%20on%20the%20Antarctic%20continental%20shelf%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20High%5Cu2010resolution%20ocean%20models%20may%20remain%20too%20warm%20on%20the%20continental%20shelf%20because%20they%20over%5Cu2010predict%20the%20sea%20ice%20cover%22%2C%22date%22%3A%222024-02-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023GL106377%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023GL106377%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-03-08T19%3A15%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22M4IA8P7Z%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shackelford%20et%20al.%22%2C%22parsedDate%22%3A%222024-02%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EShackelford%2C%20K.%2C%20Demott%2C%20C.%20A.%2C%20van%20Leeuwen%2C%20P.%20J.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20%26amp%3B%20Sun%2C%20R.%20%282024%29.%20A%20Cold%20Lid%20on%20a%20Warm%20Ocean%3A%20Indian%20Ocean%20Surface%20Rain%20Layers%20and%20Their%20Feedbacks%20to%20the%20Atmosphere.%20%3Ci%3EJournal%20of%20Geophysical%20Research-Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%284%29%2C%2022.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023jd039272%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023jd039272%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Cold%20Lid%20on%20a%20Warm%20Ocean%3A%20Indian%20Ocean%20Surface%20Rain%20Layers%20and%20Their%20Feedbacks%20to%20the%20Atmosphere%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Shackelford%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20A.%22%2C%22lastName%22%3A%22Demott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20J.%22%2C%22lastName%22%3A%22van%20Leeuwen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Sun%22%7D%5D%2C%22abstractNote%22%3A%22Ocean%20surface%20rain%20layers%20%28RLs%29%20form%20when%20relatively%20colder%2C%20fresher%2C%20less%20dense%20rain%20water%20stably%20stratifies%20the%20upper%20ocean.%20RLs%20cool%20sea%20surface%20temperature%20%28SST%29%20by%20confining%20surface%20evaporative%20cooling%20to%20a%20thin%20near-surface%20layer%2C%20and%20generate%20sharp%20SST%20gradients%20between%20the%20cool%20RL%20and%20the%20surrounding%20ocean.%20In%20this%20study%2C%20ocean-atmosphere%20coupled%20simulations%20of%20the%20November%202011%20Madden-Julian%20Oscillation%20%28MJO%29%20event%20are%20conducted%20with%20and%20without%20RLs%20to%20evaluate%20two%20pathways%20for%20RLs%20to%20influence%20the%20atmosphere.%20The%20first%2C%20termed%20the%20%5C%22SST%20gradient%20effect%2C%5C%22%20arises%20from%20the%20hydrostatic%20adjustment%20of%20the%20boundary%20layer%20to%20RL-enhanced%20SST%20gradients.%20The%20second%2C%20termed%20the%20%5C%22SST%20effect%2C%5C%22%20arises%20from%20RL-induced%20SST%20reductions%20impeding%20the%20development%20of%20deep%20atmospheric%20convection.%20RLs%20are%20found%20to%20sharpen%20SST%20gradients%20throughout%20the%20MJO%20suppressed%20and%20suppressed-to-enhanced%20convection%20transition%20phases%2C%20but%20their%20effect%20on%20convection%20is%20only%20detected%20during%20the%20MJO%20suppressed%20phase%20when%20RL-induced%20SST%20gradients%20enhance%20low-level%20convergence%5C%2Fdivergence%20and%20broaden%20the%20atmospheric%20vertical%20velocity%20probability%20distribution%20below%205%20km.%20The%20SST%20effect%20is%20more%20evident%20than%20the%20SST%20gradient%20effect%20during%20the%20MJO%20transition%20phase%2C%20as%20RLs%20reduce%20domain%20average%20SST%20by%200.03%20K%20and%20narrow%20vertical%20velocity%20distribution%2C%20thus%20delaying%20onset%20of%20deep%20convection.%20A%20delayed%20SST%20effect%20is%20also%20identified%2C%20wherein%20frequent%20RLs%20during%20the%20MJO%20transition%20phase%20isolate%20accumulated%20subsurface%20ocean%20heat%20from%20the%20atmosphere.%20The%20arrival%20of%20strong%20winds%20at%20the%20onset%20of%20the%20MJO%20active%20phase%20erodes%20RLs%20and%20releases%20subsurface%20ocean%20heat%20to%20the%20atmosphere%2C%20supporting%20the%20development%20of%20deep%20convection.%20Rain%20water%20is%20less%20dense%20than%20near-surface%20ocean%20water.%20For%20this%20reason%2C%20rain%20water%20can%20float%20on%20the%20ocean%20surface%20following%20rain%20events%20and%20form%20a%20%5C%22rain%20layer%5C%22%20in%20the%20upper%20ocean.%20Rain%20layers%20that%20form%20in%20the%20tropical%20Indian%20Ocean%20reduce%20sea%20surface%20temperature%20%28SST%29%20and%20shield%20the%20subsurface%20ocean%20below%20the%20rain%20layer%20from%20the%20atmosphere%2C%20thus%20altering%20heat%20exchange%20between%20the%20ocean%20and%20atmosphere.%20In%20this%20study%2C%20we%20conduct%20model%20experiments%20over%20the%20tropical%20Indian%20Ocean%20to%20investigate%20rain%20layer%20feedbacks%20to%20the%20atmosphere.%20We%20identify%20two%20potential%20rain%20layer%20feedback%20mechanisms%2C%20one%20in%20which%20rain-enhancement%20of%20SST%20gradients%20contributes%20to%20the%20formation%20of%20clouds%20and%20precipitation%20in%20the%20atmosphere%2C%20and%20a%20second%20in%20which%20rain-driven%20SST%20reduction%20suppresses%20the%20development%20of%20clouds%20and%20precipitation.%20Our%20results%20indicate%20that%20rain-driven%20SST%20reduction%20is%20the%20dominant%20immediate%20feedback%2C%20as%20clouds%20and%20precipitation%20are%20reduced%20in%20the%20presence%20of%20rain%20layers.%20A%20delayed%20rain%20layer%20feedback%20is%20also%20identified%2C%20wherein%20rain%20layers%20insulate%20subsurface%20ocean%20heat%20from%20the%20atmosphere.%20When%20rain%20layers%20are%20destroyed%20by%20wind-driven%20mixing%2C%20the%20stored%20ocean%20heat%20is%20released%20to%20the%20atmosphere%2C%20and%20supports%20the%20development%20of%20clouds%20and%20precipitation.%20Cold%20and%20statically%20stable%20freshwater%20rain%20layers%20%28RLs%29%20warm%20the%20subsurface%20ocean%20by%20reducing%20nocturnal%20vertical%20mixing%20RL-induced%20surface%20cooling%20and%20sub-surface%20warming%20first%20delay%2C%20but%20then%20enhance%20the%20development%20of%20deep%20convection%20within%20the%20Madden-Julian%20Oscillation%20%28MJO%29%20RL%20regulation%20of%20convective%20intensity%20may%20thus%20play%20a%20role%20in%20setting%20MJO%20period%20and%20propagation%20speed%22%2C%22date%22%3A%22Feb%202024%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2023jd039272%22%2C%22ISSN%22%3A%222169-897X%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22NWLRM2I3%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A10%3A57Z%22%7D%7D%2C%7B%22key%22%3A%227BB7GSET%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Prend%20et%20al.%22%2C%22parsedDate%22%3A%222024-01-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPrend%2C%20C.%20J.%2C%20MacGilchrist%2C%20G.%20A.%2C%20Manucharyan%2C%20G.%20E.%2C%20Pang%2C%20R.%20Q.%2C%20Moorman%2C%20R.%2C%20Thompson%2C%20A.%20F.%2C%20Griffies%2C%20S.%20M.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Talley%2C%20L.%20D.%2C%20%26amp%3B%20Gille%2C%20S.%20T.%20%282024%29.%20Ross%20Gyre%20variability%20modulates%20oceanic%20heat%20supply%20toward%20the%20West%20Antarctic%20continental%20shelf.%20%3Ci%3ECommunications%20Earth%20%26amp%3B%20Environment%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%281%29%2C%2047.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01207-y%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01207-y%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ross%20Gyre%20variability%20modulates%20oceanic%20heat%20supply%20toward%20the%20West%20Antarctic%20continental%20shelf%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Channing%20J.%22%2C%22lastName%22%3A%22Prend%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Graeme%20A.%22%2C%22lastName%22%3A%22MacGilchrist%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Georgy%20E.%22%2C%22lastName%22%3A%22Manucharyan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rachel%20Q.%22%2C%22lastName%22%3A%22Pang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruth%22%2C%22lastName%22%3A%22Moorman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20F.%22%2C%22lastName%22%3A%22Thompson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20M.%22%2C%22lastName%22%3A%22Griffies%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynne%20D.%22%2C%22lastName%22%3A%22Talley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20West%20Antarctic%20Ice%20Sheet%20mass%20loss%20is%20a%20major%20source%20of%20uncertainty%20in%20sea%20level%20projections.%20The%20primary%20driver%20of%20this%20melting%20is%20oceanic%20heat%20from%20Circumpolar%20Deep%20Water%20originating%20offshore%20in%20the%20Antarctic%20Circumpolar%20Current.%20Yet%2C%20in%20assessing%20melt%20variability%2C%20open%20ocean%20processes%20have%20received%20considerably%20less%20attention%20than%20those%20governing%20cross-shelf%20exchange.%20Here%2C%20we%20use%20Lagrangian%20particle%20release%20experiments%20in%20an%20ocean%20model%20to%20investigate%20the%20pathways%20by%20which%20Circumpolar%20Deep%20Water%20moves%20toward%20the%20continental%20shelf%20across%20the%20Pacific%20sector%20of%20the%20Southern%20Ocean.%20We%20show%20that%20Ross%20Gyre%20expansion%2C%20linked%20to%20wind%20and%20sea%20ice%20variability%2C%20increases%20poleward%20heat%20transport%20along%20the%20gyre%5Cu2019s%20eastern%20limb%20and%20the%20relative%20fraction%20of%20transport%20toward%20the%20Amundsen%20Sea.%20Ross%20Gyre%20variability%2C%20therefore%2C%20influences%20oceanic%20heat%20supply%20toward%20the%20West%20Antarctic%20continental%20slope.%20Understanding%20remote%20controls%20on%20basal%20melt%20is%20necessary%20to%20predict%20the%20ice%20sheet%20response%20to%20anthropogenic%20forcing.%22%2C%22date%22%3A%222024-01-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs43247-024-01207-y%22%2C%22ISSN%22%3A%222662-4435%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs43247-024-01207-y%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22P6BBM9XF%22%2C%22AR4GIKGB%22%5D%2C%22dateModified%22%3A%222024-03-08T19%3A11%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22XWKZ3BVI%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ellison%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EEllison%2C%20E.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Mashayek%2C%20A.%20%282024%29.%20The%20Rapid%20Response%20of%20Southern%20Ocean%20Biological%20Productivity%20to%20Changes%20in%20Background%20Small%20Scale%20Turbulence.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%2810%29%2C%20e2024JC021158.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JC021158%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JC021158%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Rapid%20Response%20of%20Southern%20Ocean%20Biological%20Productivity%20to%20Changes%20in%20Background%20Small%20Scale%20Turbulence%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Ellison%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Mashayek%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Background%20subsurface%20vertical%20mixing%20rates%20in%20the%20Southern%20Ocean%20%28SO%29%20are%20known%20to%20vary%20by%20an%20order%20of%20magnitude%20temporally%20and%20spatially%2C%20due%20to%20variability%20in%20their%20generating%20mechanisms%2C%20which%20include%20winds%20and%20shear%20instabilities%20at%20the%20surface%2C%20and%20the%20interaction%20of%20tides%20and%20lee%20waves%20with%20rough%20bottom%20topography.%20There%20is%20great%20uncertainty%20in%20the%20parameterization%20of%20this%20mixing%20in%20coarse%20resolution%20Earth%20System%20Models%20%28ESM%29%2C%20and%20in%20the%20impact%20that%20this%20has%20on%20SO%20biological%20productivity%20on%20sub%20decadal%20timescales.%20Using%20a%20data%20assimilating%20biogeochemical%20ocean%20model%20we%20show%20that%20SO%20phytoplankton%20productivity%20is%20highly%20sensitive%20to%20differences%20in%20background%20diapycnal%20mixing%20over%20short%20timescales.%20Changes%20in%20the%20background%20vertical%20mixing%20rates%20alter%20key%20biogeochemical%20and%20physical%20conditions.%20The%20greatest%20changes%20to%20the%20distribution%20of%20physical%20and%20biogeochemical%20tracers%20occur%20in%20regions%20with%20very%20strong%20tracer%20vertical%20gradients.%20A%20combination%20of%20reduced%20nutrient%20limitation%20and%20reduced%20light%20limitation%20causes%20a%20strong%20increase%20in%20SO%20phytoplankton%20productivity%20with%20higher%20background%20mixing.%20This%20leads%20to%20increased%20summer%20carbon%20export%20but%20reduced%20wintertime%20export%20over%20the%20mixed%20layer%20depth%2C%20which%20could%20alter%20the%20strength%20of%20the%20SO%20biological%20carbon%20pump%20and%20atmospheric%20%20concentrations%20on%20centennial%20to%20millennial%20timescales.%20This%20study%20demonstrates%20the%20importance%20of%20accurately%20representing%20diapycnal%20mixing%20in%20ESM%20to%20predict%20SO%20biogeochemical%20dynamics%20and%20their%20broader%20climatic%20implications.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20vertical%20mixing%20of%20water%20beneath%20the%20surface%20of%20the%20Southern%20Ocean%20varies%20significantly%20over%20time%20and%20space%20due%20to%20factors%20such%20as%20winds%2C%20tides%2C%20and%20the%20interaction%20of%20waves%20with%20the%20ocean%20floor%27s%20topography.%20This%20is%20hard%20to%20represent%20in%20ocean%20climate%20models%2C%20which%20are%20essential%20for%20understanding%20the%20ocean%27s%20role%20in%20global%20climate%20systems.%20In%20this%20work%2C%20we%20investigate%20how%20this%20mixing%20affects%20the%20productivity%20of%20phytoplankton%2C%20tiny%20plants%20crucial%20to%20the%20ocean%27s%20ecosystem.%20We%20demonstrate%20that%20even%20small%20changes%20in%20background%20mixing%20rates%20can%20profoundly%20impact%20phytoplankton%20productivity%20in%20the%20Southern%20Ocean%20over%20short%20time%20periods.%20Alterations%20in%20mixing%20rates%20influence%20key%20environmental%20conditions%2C%20particularly%20nutrient%20and%20light%20availability%2C%20which%20are%20vital%20for%20phytoplankton%20growth.%20This%20heightened%20productivity%20enhances%20the%20ocean%27s%20ability%20to%20absorb%20carbon%20dioxide%20from%20the%20atmosphere%2C%20potentially%20affecting%20long%5Cu2010term%20atmospheric%20%20levels.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20rate%20of%20background%20vertical%20mixing%20is%20a%20key%20control%20of%20Southern%20Ocean%20phytoplankton%20productivity%20over%20annual%20timescales%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Increased%20mixing%20enhances%20the%20vertical%20flux%20of%20nutrients%20to%20the%20surface%2C%20increasing%20productivity%20and%20altering%20phytoplankton%20assemblages%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Mixing%20rates%20alter%20the%20physical%20and%20biogeochemical%20environment%2C%20reducing%20the%20carbon%20exported%20to%20below%20the%20winter%20mixed%20layer%20depth%22%2C%22date%22%3A%2210%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024JC021158%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024JC021158%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-10-22T17%3A58%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22ZNYNDLAD%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESun%2C%20R.%2C%20Sanikommu%2C%20S.%2C%20Subramanian%2C%20A.%20C.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Cornuelle%2C%20B.%20D.%2C%20Gopalakrishnan%2C%20G.%2C%20Miller%2C%20A.%20J.%2C%20%26amp%3B%20Hoteit%2C%20I.%20%282024%29.%20Enhanced%20regional%20ocean%20ensemble%20data%20assimilation%20through%20atmospheric%20coupling%20in%20the%20SKRIPS%20model.%20%3Ci%3EOcean%20Modelling%3C%5C%2Fi%3E%2C%20%3Ci%3E191%3C%5C%2Fi%3E%2C%20102424.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ocemod.2024.102424%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ocemod.2024.102424%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhanced%20regional%20ocean%20ensemble%20data%20assimilation%20through%20atmospheric%20coupling%20in%20the%20SKRIPS%20model%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rui%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sivareddy%22%2C%22lastName%22%3A%22Sanikommu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ganesh%22%2C%22lastName%22%3A%22Gopalakrishnan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arthur%20J.%22%2C%22lastName%22%3A%22Miller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ibrahim%22%2C%22lastName%22%3A%22Hoteit%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2210%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.ocemod.2024.102424%22%2C%22ISSN%22%3A%2214635003%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1463500324001112%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%22784978NX%22%2C%22R4DENPGW%22%2C%22P6BBM9XF%22%2C%22NWLRM2I3%22%5D%2C%22dateModified%22%3A%222024-10-04T23%3A29%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22U3J3VJ6B%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Menezes%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMenezes%2C%20V.%20V.%2C%20Robbins%2C%20P.%2C%20Furey%2C%20H.%2C%20%26amp%3B%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20%282024%29.%20Deep%20Argo%20Observations%20of%20Antarctic%20Bottom%20Water%20in%20the%20Deep%20Fracture%20Zones%20of%20the%20Southwest%20Indian%20Ridge.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%287%29%2C%20e2024JC021165.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JC021165%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JC021165%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Deep%20Argo%20Observations%20of%20Antarctic%20Bottom%20Water%20in%20the%20Deep%20Fracture%20Zones%20of%20the%20Southwest%20Indian%20Ridge%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Viviane%20V.%22%2C%22lastName%22%3A%22Menezes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pelle%22%2C%22lastName%22%3A%22Robbins%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Heather%22%2C%22lastName%22%3A%22Furey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Madagascar%20Basin%20is%20the%20primary%20pathway%20for%20Antarctic%20Bottom%20Water%20to%20ventilate%20the%20entire%20western%20Indian%20Ocean%20as%20part%20of%20the%20Global%20Overturning%20Circulation.%20The%20only%20way%20for%20this%20water%20mass%20to%20reach%20this%20basin%20is%20by%20crossing%20the%20Southwest%20Indian%20Ridge%20through%20its%20deep%20fracture%20zones.%20However%2C%20due%20to%20the%20scarcity%20of%20observations%2C%20the%20Antarctic%20Bottom%20Water%20presence%20has%20only%20been%20well%5Cu2010established%20in%20the%20Atlantis%20II%20fracture%20zone.%20In%20May%202023%2C%20the%20Deep%20Madagascar%20Basin%20Experiment%20deployed%20three%20Deep%20SOLO%20Argo%20floats%20in%20the%20exit%20of%20the%20fracture%20zones%20that%20were%20more%20likely%20to%20transport%20Antarctic%20Bottom%20Water%3A%20Atlantis%20II%2C%20Novara%2C%20and%20Melville.%20These%20floats%20have%20been%20collecting%20temperature%20and%20salinity%20profiles%20every%203%5Cu20135%5Cu00a0days%20with%20high%20vertical%20resolution%20in%20the%20deep%20ocean.%20In%20the%20present%20paper%2C%20we%20use%20the%20first%207%5Cu00a0months%20of%20float%20data%20to%20characterize%20the%20Antarctic%20Bottom%20Water%20in%20the%20deep%20fracture%20zone%20area%2C%20revisiting%20a%20half%5Cu2010century%20puzzle%20about%20the%20Melville%20contribution.%20We%20also%20collected%20shipboard%5Cu2010based%20profiles%20to%20calibrate%20float%20salinity%20and%20show%20it%20is%20within%20the%20Deep%20Argo%20program%20target%20accuracy.%20We%20find%20Antarctic%20Bottom%20Water%20in%20both%20Melville%20and%20Novara%20fracture%20zones%2C%20not%20only%20in%20Atlantis%20II.%20This%20is%20the%20first%20time%20the%20Novara%20contribution%20has%20been%20revealed.%20The%20floats%20also%20uncover%20their%20distinct%20properties%2C%20which%20may%20result%20from%20the%20different%20mixing%20histories.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Antarctic%20Bottom%20Water%20is%20important%20to%20the%20climate%20of%20our%20planet.%20It%20brings%20oxygen%20and%20other%20elements%20to%20the%20bottom%20of%20the%20ocean%20when%20it%20sinks%20around%20the%20Antarctic%20%28thus%20its%20name%29%20and%20moves%20north.%20However%2C%20we%20haven%27t%20had%20many%20ways%20to%20measure%20it%20until%20recently.%20Here%2C%20we%20use%20a%20relatively%20new%20technology%20called%20Deep%20Argo%20floats%2C%20which%20are%20autonomous%20robots%20that%20measure%20temperature%2C%20salinity%2C%20and%20pressure%20from%20the%20surface%20all%20the%20way%20down%20to%20the%20bottom%20of%20the%20ocean%20and%20transmit%20the%20data%20via%20satellite%20to%20land%20every%20few%20days%20when%20they%20are%20on%20the%20sea%20surface.%20We%20put%20three%20of%20these%20robots%20near%20the%20deep%20fracture%20zones%20of%20the%20Southwest%20Indian%20Ridge.%20The%20ridge%20is%20like%20a%20big%20wall%20separating%20two%20rooms%2C%20with%20the%20fracture%20zones%20being%20corridors%20in%20the%20wall%20that%20allow%20water%20in%20the%20ocean%20bottom%20to%20move%20from%20one%20room%20to%20the%20other.%20We%20chose%20corridors%20we%20guessed%20could%20have%20Antarctic%20Bottom%20Water%3A%20Atlantis%20II%2C%20Novara%2C%20and%20Melville.%20The%20robots%20are%20helping%20to%20solve%20a%20big%20mystery%20that%20has%20been%20around%20for%2050%5Cu00a0years%20and%2C%20in%20just%207%5Cu00a0months%20of%20their%204%5Cu2010year%20missions%2C%20have%20already%20improved%20our%20understanding%20of%20the%20bottom%20of%20the%20ocean.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20floats%20collected%20the%20region%27s%20largest%20temperature%5Cu2010salinity%20data%20set%20to%20date%2C%20with%20adjusted%20salinity%20meeting%20the%20Deep%20Argo%20target%20accuracy%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20floats%20found%20a%20new%20abyssal%20ventilation%20source%20%28Novara%20fracture%20zone%29%20to%20the%20Madagascar%20Basin%20and%20solved%20the%20Melville%20inflow%20puzzle%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20abyssal%20layer%20is%20fresher%20at%20the%20Melville%20fracture%20zone%20and%20saltier%20at%20Atlantis%20II%2C%20with%20Novara%20having%20intermediate%20water%20mass%20properties%22%2C%22date%22%3A%2207%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024JC021165%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024JC021165%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-08-29T22%3A48%3A17Z%22%7D%7D%2C%7B%22key%22%3A%224RLHRCNU%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kachelein%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKachelein%2C%20L.%2C%20Gille%2C%20S.%20T.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20%26amp%3B%20Cornuelle%2C%20B.%20D.%20%282024%29.%20Characterizing%20Non%26%23x2010%3BPhase%26%23x2010%3BLocked%20Tidal%20Currents%20in%20the%20California%20Current%20System%20Using%20High%26%23x2010%3BFrequency%20Radar.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%287%29%2C%20e2023JC020340.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC020340%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC020340%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Characterizing%20Non%5Cu2010Phase%5Cu2010Locked%20Tidal%20Currents%20in%20the%20California%20Current%20System%20Using%20High%5Cu2010Frequency%20Radar%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luke%22%2C%22lastName%22%3A%22Kachelein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Over%209%5Cu00a0years%20of%20hourly%20surface%20current%20data%20from%20high%5Cu2010frequency%20radar%20%28HFR%29%20off%20the%20US%20West%20Coast%20are%20analyzed%20using%20a%20Bayesian%20least%5Cu2010squares%20fit%20for%20tidal%20components.%20The%20spatial%20resolution%20and%20geographic%20extent%20of%20HFR%20data%20allow%20us%20to%20assess%20the%20spatial%20structure%20of%20the%20non%5Cu2010phase%5Cu2010locked%20component%20of%20the%20tide.%20In%20the%20frequency%20domain%2C%20the%20record%20length%20and%20sampling%20rate%20allow%20resolution%20of%20discrete%20tidal%20lines%20corresponding%20to%20well%5Cu2010known%20constituents%20and%20the%20near%5Cu2010tidal%20broadband%20elevated%20continuum%20resulting%20from%20amplitude%20and%20phase%20modulation%20of%20the%20tides%2C%20known%20as%20cusps.%20The%20FES2014%20tide%20model%20is%20used%20to%20remove%20the%20barotropic%20component%20of%20tidal%20surface%20currents%20in%20order%20to%20evaluate%20its%20contribution%20to%20the%20phase%5Cu2010locked%20variance%20and%20spatial%20structure.%20The%20mean%20time%20scale%20of%20modulation%20is%20243%5Cu00a0days%20for%20the%20M%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20constituent%20and%20181%5Cu00a0days%20for%20S%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20with%20overlap%20in%20their%20range%20of%20values.%20These%20constituents%27%20modulated%20amplitudes%20are%20significantly%20correlated%20in%20several%20regions%2C%20suggesting%20shared%20forcing%20mechanisms.%20Within%20the%20frequency%20band%20M%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b1%205%20cycles%20per%20year%2C%20an%20average%20of%2048%25%20of%20energy%20is%20not%20at%20the%20phase%5Cu2010locked%20frequency.%20When%20we%20remove%20the%20barotropic%20model%2C%20this%20increases%20to%2064%25.%20In%20both%20cases%20there%20is%20substantial%20regional%20variability.%20This%20indicates%20that%20a%20large%20fraction%20of%20tidal%20energy%20is%20not%20easily%20predicted%20%28e.g.%2C%20for%20satellite%20altimeter%20applications%29.%20The%20spatial%20autocorrelation%20of%20the%20non%5Cu2010phase%5Cu2010locked%20variance%20fraction%20drops%20to%20zero%20over%20a%20distance%20of%20150%5Cu00a0km%2C%20a%20scale%20that%20is%20comparable%20to%20the%20swath%20width%20of%20the%20Surface%20Water%20and%20Ocean%20Topography%20altimeter.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Tides%20in%20the%20ocean%20encompass%20both%20the%20highly%20predictable%20daily%20changes%20in%20sea%20level%20seen%20from%20the%20shore%20as%20well%20as%20a%20less%20predictable%20component%20that%20changes%20over%20time%20depending%20on%20seasonal%20conditions%20and%20wind.%20Tidal%20signals%20are%20detectable%20at%20the%20ocean%20surface%2C%20for%20example%2C%20via%20satellite%20or%20land%5Cu2010based%20radar%20antenna.%20The%20time%5Cu2010evolving%20tide%20signals%20interact%20with%20other%20processes%20in%20the%20ocean%2C%20like%20currents%2C%20and%20can%20become%20harder%20to%20predict%20and%20describe.%20Many%20studies%20have%20examined%20this%20aspect%20of%20tides.%20In%20this%20work%2C%20we%20use%20land%5Cu2010based%20radar%20observations%20of%20ocean%20currents%20off%20the%20US%20West%20Coast%20to%20examine%20this%20process%20with%20high%20detail%2C%20using%20mathematical%20techniques%20to%20separate%20the%20tides%20from%20everything%20else%20and%20then%20evaluating%20how%20much%20the%20tide%20has%20been%20altered%20by%20other%20processes.%20This%20is%20useful%20because%20ocean%5Cu2010observing%20satellites%20can%20observe%20a%20single%20part%20of%20the%20ocean%20only%20when%20the%20satellite%20passes%20overhead%2C%20approximately%20every%2010%5Cu201320%5Cu00a0days%2C%20while%20the%20data%20we%20analyze%20are%20sampled%20hourly%20and%20thus%20more%20easily%20allow%20us%20to%20draw%20conclusions%20about%20how%20tides%20behave.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20the%20California%20Current%20System%2C%20High%5Cu2010Frequency%20Radar%20resolves%20stationary%20and%20non%5Cu2010stationary%20tides%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Broadband%20cusps%20occur%20at%20tidal%20constituent%20frequencies%2C%20with%20M%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20exhibiting%20annual%20modulation%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20analyze%20the%20tidal%20modulation%20to%20assess%20physics%20governing%20non%5Cu2010stationary%20tidal%20variability%22%2C%22date%22%3A%2207%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JC020340%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JC020340%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22TFFGCZNI%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-08-29T22%3A34%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22HUBI4LRV%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tchonang%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETchonang%2C%20B.%20C.%2C%20Archer%2C%20M.%20R.%2C%20Gopalakrishnan%2C%20G.%2C%20Cornuelle%2C%20B.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Wang%2C%20J.%2C%20%26amp%3B%20Fu%2C%20L.-L.%20%282024%29.%20Evaluation%20of%20a%204DVAR%20Assimilation%20System%20in%20the%20California%20Current%20at%20the%20SWOT%20Calibration%5C%2FValidation%20Site.%20%3Ci%3EJournal%20of%20Atmospheric%20and%20Oceanic%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E41%3C%5C%2Fi%3E%286%29%2C%20533%26%23x2013%3B549.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-23-0112.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-23-0112.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Evaluation%20of%20a%204DVAR%20Assimilation%20System%20in%20the%20California%20Current%20at%20the%20SWOT%20Calibration%5C%2FValidation%20Site%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Babette%20C.%22%2C%22lastName%22%3A%22Tchonang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Archer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ganesh%22%2C%22lastName%22%3A%22Gopalakrishnan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jinbo%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lee-Lueng%22%2C%22lastName%22%3A%22Fu%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20evaluates%20the%20feasibility%20of%20applying%20the%20Estimating%20the%20Circulation%20and%20Climate%20of%20the%20Ocean%20%28ECCO%29%20data%20assimilation%20%28DA%29%20framework%20to%20a%20submesoscale-resolving%20model%20%5BMassachusetts%20Institute%20of%20Technology%20General%20Circulation%20Model%20%28MITgcm%29%2C%20at%201-km%20grid%20resolution%5D.%20This%20is%20in%20preparation%20for%20future%20studies%20to%20understand%20and%20assimilate%20the%20novel%20swath%20measurements%20of%20sea%20surface%20height%20from%20the%20Surface%20Water%20and%20Ocean%20Topography%20%28SWOT%29%20satellite%20mission.%20The%20model%20domain%20is%20centered%20at%20the%20SWOT%20calibration%5C%2Fvalidation%20%28CalVal%29%20site%2C%20located%20300%20km%20offshore%20of%20Monterey%20Bay%2C%20California.%20We%20assimilate%20vertical%20profiles%20of%20temperature%20and%20salinity%20from%20a%20linear%20array%20of%20three%20SWOT%20prelaunch%20CalVal%20moorings%2C%20between%20September%20and%20December%202019.%20Two%20model%20solutions%20are%20analyzed%3A%201%29%20a%20nonassimilating%20forward%20simulation%20termed%20%5Cu201cfirst-guess%5Cu201d%20and%202%29%20an%20optimized%20solution%20that%20assimilates%20the%20in%20situ%20observations.%20Both%20runs%20are%20nested%20within%20the%20global%201%5C%2F12%5Cu00b0%20Hybrid%20Coordinate%20Ocean%20Model%20that%20uses%20Navy%20Coupled%20Ocean%20Data%20Assimilation%20%28HYCOM%5C%2FNCODA%29%20analysis.%20We%20evaluate%20the%20performance%20by%20comparing%20the%20two%20model%20solutions%20against%20assimilated%20and%20withheld%20in%20situ%20observations.%20We%20show%20that%20by%20assimilating%20hydrographic%20data%2C%20the%20model%20performance%20over%20the%20first-guess%20solution%20is%20improved%20with%20an%20error-to-observation%20reduction%20of%2030%25%5Cu201345%25%20for%20temperature%2C%2014%25%5Cu201341%25%20for%20salinity%2C%20and%2044%25%5Cu201356%25%20for%20steric%20height.%20Over%20the%20study%20period%2C%20the%20average%20steric%20height%20error%20at%20the%20three%20assimilated%20moorings%20was%201.27%20cm%20for%20the%20optimized%20solution%20versus%202.6%20cm%20for%20the%20first-guess%20solution.%20A%20comparison%20to%20withheld%20glider%20observations%20shows%20that%20the%20optimized%20solution%20outperforms%20the%20first-guess%20solution%20with%20an%20error-to-observation%20reduction%20of%20approximately%2038%25%20in%20steric%20height%20%281.5%20versus%202.4%20cm%29.%20This%20study%20indicates%2C%20for%20the%20first%20time%2C%20that%20the%20MITgcm%5Cu2013ECCO%20framework%20can%20be%20successfully%20applied%20to%20the%20reconstruction%20of%20submesoscale%20ocean%20variability%2C%20via%20the%20nesting%20of%20a%20high-resolution%20regional%20domain%20into%20a%20global%20outer%20domain.%22%2C%22date%22%3A%2206%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJTECH-D-23-0112.1%22%2C%22ISSN%22%3A%220739-0572%2C%201520-0426%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fatot%5C%2F41%5C%2F6%5C%2FJTECH-D-23-0112.1.xml%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%22784978NX%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-10-04T23%3A31%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22X4BQF5T7%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Eddebbar%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EEddebbar%2C%20Y.%20A.%2C%20Whitt%2C%20D.%20B.%2C%20Verdy%2C%20A.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Subramanian%2C%20A.%20C.%2C%20%26amp%3B%20Long%2C%20M.%20C.%20%282024%29.%20Eddy%26%23x2010%3BMediated%20Turbulent%20Mixing%20of%20Oxygen%20in%20the%20Equatorial%20Pacific.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%283%29%2C%20e2023JC020588.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC020588%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC020588%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Eddy%5Cu2010Mediated%20Turbulent%20Mixing%20of%20Oxygen%20in%20the%20Equatorial%20Pacific%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yassir%20A.%22%2C%22lastName%22%3A%22Eddebbar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20B.%22%2C%22lastName%22%3A%22Whitt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ariane%22%2C%22lastName%22%3A%22Verdy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20C.%22%2C%22lastName%22%3A%22Long%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20the%20tropical%20Pacific%2C%20weak%20ventilation%20and%20intense%20microbial%20respiration%20at%20depth%20give%20rise%20to%20a%20low%20dissolved%20oxygen%20%28O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20environment%20that%20is%20thought%20to%20be%20ventilated%20primarily%20by%20the%20equatorial%20current%20system%20%28ECS%29.%20The%20role%20of%20mesoscale%20eddies%20and%20vertical%20mixing%20as%20potential%20pathways%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20supply%20in%20this%20region%2C%20however%2C%20remains%20poorly%20known%20due%20to%20sparse%20observations%20and%20coarse%20model%20resolution.%20Using%20an%20eddy%20resolving%20simulation%20of%20ocean%20circulation%20and%20biogeochemistry%2C%20we%20assess%20the%20contribution%20of%20these%20processes%20to%20the%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20budget%20balance%20and%20find%20that%20vertical%20mixing%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20which%20is%20modulated%20by%20the%20surface%20wind%20speed%20and%20the%20vertical%20shear%20of%20the%20eddying%20currents%2C%20contributes%20substantially%20to%20the%20replenishment%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20the%20upper%20equatorial%20Pacific%20thermocline%2C%20complementing%20the%20advective%20supply%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20the%20ECS%20and%20meridional%20circulation%20at%20depth.%20These%20transport%20processes%20vary%20seasonally%20in%20conjunction%20with%20the%20wind%3A%20mixing%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20into%20the%20upper%20thermocline%20is%20strongest%20during%20boreal%20summer%20and%20fall%20when%20the%20vertical%20shear%20and%20eddy%20kinetic%20energy%20are%20intensified.%20The%20relationship%20between%20eddy%20activity%20and%20the%20downward%20mixing%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20arises%20from%20the%20modulation%20of%20equatorial%20turbulence%20by%20Tropical%20Instability%20Waves%20via%20their%20impacts%20on%20the%20vertical%20shear.%20This%20interaction%20of%20processes%20across%20scales%20sustains%20a%20local%20pathway%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20delivery%20into%20the%20equatorial%20Pacific%20interior%20and%20highlights%20the%20need%20for%20adequate%20observations%20and%20models%20of%20turbulent%20mixing%20and%20mesoscale%20processes%20for%20understanding%20and%20predicting%20the%20fate%20of%20the%20tropical%20Pacific%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20content%20in%20a%20warmer%20and%20more%20stratified%20ocean.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20eastern%20tropical%20Pacific%20interior%20is%20an%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20deficient%20environment%2C%20due%20to%20intense%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20consumption%20by%20microbial%20communities%20that%20is%20not%20vigorously%20replenished%20by%20ocean%20circulation%20at%20depth.%20In%20this%20study%2C%20we%20use%20a%20high%20resolution%20simulation%20of%20ocean%20circulation%20and%20biogeochemistry%20to%20understand%20the%20role%20of%20finer%20scale%20processes%20such%20as%20turbulence%20and%20eddies%20in%20injecting%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20locally.%20We%20find%20that%20mixing%20due%20to%20turbulence%20along%20the%20equator%20supplies%20a%20key%20portion%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20into%20the%20ocean%20by%20exchanging%20waters%20between%20the%20well%5Cu2010aerated%20mixed%20layer%20near%20the%20surface%20and%20the%20ocean%27s%20interior%20where%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20falls%20precipitously%20with%20depth.%20We%20also%20find%20that%20this%20mixing%20varies%20considerably%20with%20the%20seasons.%20This%20annual%20cycle%20in%20mixing%20arises%20from%20the%20seasonal%20variability%20in%20wind%20stress%20and%20the%20passage%20of%20eddies%2C%20which%20amplify%20turbulence%20through%20their%20influence%20on%20the%20subsurface%20currents%20along%20the%20equator%2C%20and%20represents%20a%20previously%20unexplored%20but%20potentially%20important%20route%20of%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20delivery%20into%20the%20ocean%27s%20interior.%20As%20the%20upper%20ocean%20warms%20and%20becomes%20less%20dense%2C%20the%20ocean%27s%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20content%20is%20expected%20to%20decrease%2C%20and%20thus%20observing%20and%20accurately%20modeling%20these%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20pathways%20will%20be%20crucial%20to%20monitoring%20how%20marine%20ecosystem%20habitats%20will%20shift%20in%20a%20warmer%20climate.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Mesoscale%5Cu2010resolving%20ocean%20biogeochemistry%20simulations%20show%20vertical%20mixing%20is%20a%20key%20source%20of%20oxygen%20to%20the%20equatorial%20Pacific%20thermocline%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20supply%20of%20oxygen%20by%20advection%20and%20vertical%20mixing%20is%20strongly%20seasonal%20and%20is%20driven%20by%20seasonal%20variability%20in%20the%20wind%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20vertical%20mixing%20of%20oxygen%20is%20modulated%20by%20the%20wind%20stress%20and%20mesoscale%20eddy%20impacts%20on%20equatorial%20shear%5Cu2010driven%20turbulence%22%2C%22date%22%3A%2203%5C%2F2024%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JC020588%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JC020588%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%229HSCH4RV%22%2C%22YZZ6KTR8%22%5D%2C%22dateModified%22%3A%222024-04-11T23%3A20%3A38Z%22%7D%7D%2C%7B%22key%22%3A%2245VWDLL6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tedesco%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETedesco%2C%20P.%20F.%2C%20Baker%2C%20L.%20E.%2C%20Naveira%20Garabato%2C%20A.%20C.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Gille%2C%20S.%20T.%2C%20Caulfield%2C%20C.%20P.%2C%20%26amp%3B%20Mashayek%2C%20A.%20%282024%29.%20Spatiotemporal%20Characteristics%20of%20the%20Near-Surface%20Turbulent%20Cascade%20at%20the%20Submesoscale%20in%20the%20Drake%20Passage.%20%3Ci%3EJournal%20of%20Physical%20Oceanography%3C%5C%2Fi%3E%2C%20%3Ci%3E54%3C%5C%2Fi%3E%281%29%2C%20187%26%23x2013%3B215.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-23-0108.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-23-0108.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spatiotemporal%20Characteristics%20of%20the%20Near-Surface%20Turbulent%20Cascade%20at%20the%20Submesoscale%20in%20the%20Drake%20Passage%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20F.%22%2C%22lastName%22%3A%22Tedesco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20E.%22%2C%22lastName%22%3A%22Baker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Naveira%20Garabato%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20P.%22%2C%22lastName%22%3A%22Caulfield%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Mashayek%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Submesoscale%20currents%20and%20internal%20gravity%20waves%20achieve%20an%20intense%20turbulent%20cascade%20near%20the%20ocean%20surface%20%5Bdepth%20of%200%5Cu2013%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28100%29%20m%5D%2C%20which%20is%20thought%20to%20give%20rise%20to%20significant%20energy%20sources%20and%20sinks%20for%20mesoscale%20eddies.%20Here%2C%20we%20characterize%20the%20contributions%20of%20nonwave%20currents%20%28NWCs%3B%20including%20eddies%20and%20fronts%29%20and%20internal%20gravity%20waves%20%28IGWs%3B%20including%20near-inertial%20motions%2C%20lee%20waves%2C%20and%20the%20internal%20wave%20continuum%29%20to%20near-surface%20submesoscale%20turbulence%20in%20the%20Drake%20Passage.%20Using%20a%20numerical%20simulation%2C%20we%20combine%20Lagrangian%20filtering%20and%20a%20Helmholtz%20decomposition%20to%20identify%20NWCs%20and%20IGWs%20and%20to%20characterize%20their%20dynamics%20%28rotational%20versus%20divergent%29.%20We%20show%20that%20NWCs%20and%20IGWs%20contribute%20in%20different%20proportions%20to%20the%20inverse%20and%20forward%20turbulent%20kinetic%20energy%20cascades%2C%20based%20on%20their%20dynamics%20and%20spatiotemporal%20scales.%20Purely%20rotational%20NWCs%20cause%20most%20of%20the%20inverse%20cascade%2C%20while%20coupled%20rotational%5Cu2013divergent%20components%20of%20NWCs%20and%20coupled%20NWC%5Cu2013IGWs%20cause%20the%20forward%20cascade.%20The%20cascade%20changes%20direction%20at%20a%20spatial%20scale%20at%20which%20motions%20become%20increasingly%20divergent.%20However%2C%20the%20forward%20cascade%20is%20ultimately%20limited%20by%20the%20motions%5Cu2019%20spatiotemporal%20scales.%20The%20bulk%20of%20the%20forward%20cascade%20%2880%25%5Cu201395%25%29%20is%20caused%20by%20NWCs%20and%20IGWs%20of%20small%20spatiotemporal%20scales%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3C%2010%20km%3B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3C%206%20h%29%2C%20which%20are%20primarily%20rotational%3A%20submesoscale%20eddies%2C%20fronts%2C%20and%20the%20internal%20wave%20continuum.%20These%20motions%20also%20cause%20a%20significant%20part%20of%20the%20inverse%20cascade%20%2830%25%29.%20Our%20results%20highlight%20the%20requirement%20for%20high%20spatiotemporal%20resolutions%20to%20diagnose%20the%20properties%20and%20large-scale%20impacts%20of%20near-surface%20submesoscale%20turbulence%20accurately%2C%20with%20significant%20implications%20for%20ocean%20energy%20cycle%20study%20strategies.%22%2C%22date%22%3A%2201%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJPO-D-23-0108.1%22%2C%22ISSN%22%3A%220022-3670%2C%201520-0485%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fphoc%5C%2F54%5C%2F1%5C%2FJPO-D-23-0108.1.xml%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222024-03-08T19%3A26%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22HGAK4UBT%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Young%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYoung%2C%20R.%2C%20Merrifield%2C%20S.%2C%20Anderson%2C%20M.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Terrill%2C%20E.%20%282024%29.%20A%20Greedy%20Depth-Seeking%20Behavior%20for%20Energy-Efficient%20Transits%20by%20an%20Autonomous%20Underwater%20Vehicle.%20%3Ci%3EIEEE%20Journal%20of%20Oceanic%20Engineering%3C%5C%2Fi%3E%2C%201%26%23x2013%3B14.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJOE.2024.3429610%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FJOE.2024.3429610%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Greedy%20Depth-Seeking%20Behavior%20for%20Energy-Efficient%20Transits%20by%20an%20Autonomous%20Underwater%20Vehicle%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Raymond%22%2C%22lastName%22%3A%22Young%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophia%22%2C%22lastName%22%3A%22Merrifield%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%22%2C%22lastName%22%3A%22Anderson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%22%2C%22lastName%22%3A%22Terrill%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FJOE.2024.3429610%22%2C%22ISSN%22%3A%220364-9059%2C%201558-1691%2C%202373-7786%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F10669820%5C%2F%22%2C%22collections%22%3A%5B%228P36D8SK%22%2C%22P6BBM9XF%22%2C%22P2Q52LDE%22%5D%2C%22dateModified%22%3A%222024-10-04T18%3A25%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22XXMFMQVR%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Luo%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELuo%2C%20H.%2C%20Yang%2C%20Q.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Nerger%2C%20L.%2C%20%26amp%3B%20Chen%2C%20D.%20%282023%29.%20The%20Impacts%20of%20Optimizing%20Model%26%23x2010%3BDependent%20Parameters%20on%20the%20Antarctic%20Sea%20Ice%20Data%20Assimilation.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E50%3C%5C%2Fi%3E%2822%29%2C%20e2023GL105690.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL105690%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL105690%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Impacts%20of%20Optimizing%20Model%5Cu2010Dependent%20Parameters%20on%20the%20Antarctic%20Sea%20Ice%20Data%20Assimilation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hao%22%2C%22lastName%22%3A%22Luo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qinghua%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Nerger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dake%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Given%20the%20role%20played%20by%20the%20historical%20and%20extensive%20coverage%20of%20sea%20ice%20concentration%20%28SIC%29%20observations%20in%20reconstructing%20the%20long%5Cu2010term%20variability%20of%20Antarctic%20sea%20ice%2C%20and%20the%20limited%20attention%20given%20to%20model%5Cu2010dependent%20parameters%20in%20current%20sea%20ice%20data%20assimilation%20studies%2C%20this%20study%20focuses%20on%20enhancing%20the%20performance%20of%20the%20Data%20Assimilation%20System%20for%20the%20Southern%20Ocean%20in%20assimilating%20SIC%20through%20optimizing%20the%20localization%20and%20observation%20error%20estimate%2C%20and%20two%20assimilation%20experiments%20were%20conducted%20from%201979%20to%202018.%20By%20comparing%20the%20results%20with%20the%20sea%20ice%20extent%20of%20the%20Southern%20Ocean%20and%20the%20sea%20ice%20thickness%20in%20the%20Weddell%20Sea%2C%20it%20becomes%20evident%20that%20the%20experiment%20with%20optimizations%20outperforms%20that%20without%20optimizations%20due%20to%20achieving%20more%20reasonable%20error%20estimates.%20Investigating%20uncertainties%20of%20the%20sea%20ice%20volume%20anomaly%20modeling%20reveals%20the%20importance%20of%20the%20sea%20ice%5Cu2010ocean%20interaction%20in%20the%20SIC%20assimilation%2C%20implying%20the%20necessity%20of%20assimilating%20more%20oceanic%20and%20sea%5Cu2010ice%20observations.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Antarctic%20sea%20ice%20is%20essential%20for%20the%20Earth%27s%20system%2C%20but%20its%20variability%20is%20challenging%20to%20understand%20due%20to%20limited%20observations%20and%20model%20limitations.%20Data%20assimilation%2C%20a%20method%20combining%20observations%20and%20simulations%2C%20can%20help%20address%20these%20challenges.%20To%20better%20incorporate%20long%20historical%20sea%20ice%20concentration%20%28SIC%29%20observations%2C%20we%20improved%20the%20Data%20Assimilation%20System%20for%20the%20Southern%20Ocean%20by%20refining%20the%20model%5Cu2010dependent%20parameters%20of%20assimilation%20in%20this%20study.%20We%20conducted%20experiments%20from%201979%20to%202018%20and%20compared%20two%20experiments%20with%20and%20without%20optimizations.%20The%20results%20demonstrate%20the%20reliability%20and%20superiority%20of%20the%20experiment%20with%20optimizations%20compared%20to%20that%20without%20optimizations%20in%20comparison%20with%20sea%20ice%20extent%20in%20the%20Southern%20Ocean%20and%20sea%20ice%20thickness%20derived%20from%20the%20upward%5Cu2010looking%20sonar%20in%20the%20Weddell%20Sea.%20Further%20analysis%20shows%20that%20the%20relationship%20between%20sea%20ice%20and%20the%20ocean%20plays%20a%20nonnegligible%20role%20in%20assimilating%20SIC%2C%20which%20reflects%20the%20need%20to%20assimilate%20more%20oceanic%20and%20sea%5Cu2010ice%20observations%20to%20improve%20the%20Antarctic%20sea%20ice%20simulation.%20Our%20studies%20can%20contribute%20to%20the%20more%20reasonable%20reconstruction%20of%20the%20long%5Cu2010term%20variability%20of%20Antarctic%20sea%20ice%2C%20which%20benefits%20a%20better%20understanding%20of%20Antarctic%20sea%20ice%20variabilities.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Refining%20localization%20and%20observation%20error%20estimate%20improves%20the%20Antarctic%20sea%20ice%20modeling%20obtained%20by%20assimilating%20sea%20ice%20concentration%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Assimilating%20sea%20ice%20concentration%20can%20constrain%20the%20modeling%20of%20Antarctic%20sea%20ice%20volume%20except%20for%20its%20modeling%20uncertainty%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20More%20oceanic%20and%20sea%5Cu2010ice%20observations%20are%20required%20for%20the%20reconstruction%20of%20Antarctic%20sea%20ice%22%2C%22date%22%3A%222023-11-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023GL105690%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023GL105690%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-12-22T22%3A03%3A04Z%22%7D%7D%2C%7B%22key%22%3A%222KJY3U8E%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wei%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWei%2C%20H.%2C%20Subramanian%2C%20A.%20C.%2C%20Karnauskas%2C%20K.%20B.%2C%20Du%2C%20D.%2C%20Balmaseda%2C%20M.%20A.%2C%20Sarojini%2C%20B.%20B.%2C%20Vitart%2C%20F.%2C%20DeMott%2C%20C.%20A.%2C%20%26amp%3B%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%20%282023%29.%20The%20role%20of%20in%20situ%20ocean%20data%20assimilation%20in%20ECMWF%20subseasonal%20forecasts%20of%20sea%26%23x2010%3Bsurface%20temperature%20and%20mixed%26%23x2010%3Blayer%20depth%20over%20the%20tropical%20Pacific%20ocean.%20%3Ci%3EQuarterly%20Journal%20of%20the%20Royal%20Meteorological%20Society%3C%5C%2Fi%3E%2C%20qj.4570.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fqj.4570%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fqj.4570%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20role%20of%20in%20situ%20ocean%20data%20assimilation%20in%20ECMWF%20subseasonal%20forecasts%20of%20sea%5Cu2010surface%20temperature%20and%20mixed%5Cu2010layer%20depth%20over%20the%20tropical%20Pacific%20ocean%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ho%5Cu2010Hsuan%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristopher%20B.%22%2C%22lastName%22%3A%22Karnauskas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Danni%22%2C%22lastName%22%3A%22Du%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Magdalena%20A.%22%2C%22lastName%22%3A%22Balmaseda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Beena%20B.%22%2C%22lastName%22%3A%22Sarojini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Frederic%22%2C%22lastName%22%3A%22Vitart%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlotte%20A.%22%2C%22lastName%22%3A%22DeMott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20tropical%20Pacific%20plays%20an%20important%20role%20in%20modulating%20the%20global%20climate%20through%20its%20prevailing%20sea%5Cu2010surface%20temperature%20spatial%20structure%20and%20dominant%20climate%20modes%20like%20El%20Ni%5Cu00f1o%5Cu2013Southern%20Oscillation%20%28ENSO%29%2C%20the%20Madden%5Cu2013Julian%20Oscillation%20%28MJO%29%2C%20and%20their%20teleconnections.%20These%20modes%20of%20variability%2C%20including%20their%20oceanic%20anomalies%2C%20are%20considered%20to%20provide%20sources%20of%20prediction%20skill%20on%20subseasonal%20timescales%20in%20the%20Tropics.%20Therefore%2C%20this%20study%20aims%20to%20examine%20how%20assimilating%20in%20situ%20ocean%20observations%20influences%20the%20initial%20ocean%20sea%5Cu2010surface%20temperature%20%28SST%29%20and%20mixed%5Cu2010layer%20depth%20%28MLD%29%20and%20their%20subseasonal%20forecasts.%20We%20analyze%20two%20subseasonal%20forecast%20systems%20generated%20with%20the%20European%20Centre%20for%20Medium%5Cu2010Range%20Weather%20Forecasts%20%28ECMWF%29%20Integrated%20Forecast%20System%20%28IFS%29%2C%20where%20the%20ocean%20states%20were%20initialized%20using%20two%20Observing%5Cu2010System%20Experiment%20%28OSE%29%20reanalyses.%20We%20find%20that%20the%20SST%20differences%20between%20forecasts%20with%20and%20without%20ocean%20data%20assimilation%20grow%20with%20time%2C%20resulting%20in%20a%20reduced%20cold%5Cu2010tongue%20bias%20when%20assimilating%20ocean%20observations.%20Two%20mechanisms%20related%20to%20air%5Cu2013sea%20coupling%20are%20considered%20to%20contribute%20to%20this%20growth%20of%20SST%20differences.%20One%20is%20a%20positive%20feedback%20between%20the%20zonal%20SST%20gradient%2C%20pressure%20gradient%2C%20and%20surface%20wind.%20The%20other%20is%20the%20difference%20in%20Ekman%20suction%20and%20mixing%20at%20the%20Equator%20due%20to%20surface%20wind%5Cu2010speed%20differences.%20While%20the%20initial%20mixed%5Cu2010layer%20depth%20%28MLD%29%20can%20be%20improved%20through%20ocean%20data%20assimilation%2C%20this%20improvement%20is%20not%20maintained%20in%20the%20forecasts.%20Instead%2C%20the%20MLD%20in%20both%20experiments%20shoals%20rapidly%20at%20the%20beginning%20of%20the%20forecast.%20These%20results%20emphasize%20how%20initialization%20and%20model%20biases%20influence%20air%5Cu2013sea%20interaction%20and%20the%20accuracy%20of%20subseasonal%20forecasts%20in%20the%20tropical%20Pacific.%22%2C%22date%22%3A%222023-10-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fqj.4570%22%2C%22ISSN%22%3A%220035-9009%2C%201477-870X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Frmets.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fqj.4570%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-12-01T19%3A41%3A06Z%22%7D%7D%2C%7B%22key%22%3A%222MG4Y2AV%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Taylor%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETaylor%2C%20B.%20A.%2C%20MacGilchrist%2C%20G.%20A.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20%26amp%3B%20Talley%2C%20L.%20D.%20%282023%29.%20Freshwater%20Displacement%20Effect%20on%20the%20Weddell%20Gyre%20Carbon%20Budget.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E50%3C%5C%2Fi%3E%2818%29%2C%20e2023GL103952.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL103952%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL103952%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Freshwater%20Displacement%20Effect%20on%20the%20Weddell%20Gyre%20Carbon%20Budget%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%20A.%22%2C%22lastName%22%3A%22Taylor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Graeme%20A.%22%2C%22lastName%22%3A%22MacGilchrist%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynne%20D.%22%2C%22lastName%22%3A%22Talley%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Weddell%20Gyre%20mediates%20carbon%20exchange%20between%20the%20abyssal%20ocean%20and%20atmosphere%2C%20which%20is%20critical%20to%20global%20climate.%20This%20region%20also%20features%20large%20and%20highly%20variable%20freshwater%20fluxes%20due%20to%20seasonal%20sea%20ice%2C%20net%20precipitation%2C%20and%20glacial%20melt%3B%20however%2C%20the%20impact%20of%20these%20freshwater%20fluxes%20on%20the%20regional%20carbon%20cycle%20has%20not%20been%20fully%20appreciated.%20Using%20a%20novel%20budget%20analysis%20of%20dissolved%20inorganic%20carbon%20%28DIC%29%20mass%20in%20the%20Biogeochemical%20Southern%20Ocean%20State%20Estimate%2C%20we%20highlight%20two%20freshwater%5Cu2010driven%20transports.%20Where%20freshwater%20with%20minimal%20DIC%20enters%20the%20ocean%2C%20it%20displaces%20DIC%5Cu2010rich%20seawater%20outwards%2C%20driving%20a%20lateral%20transport%20of%2075%5Cu00a0%5Cu00b1%5Cu00a05%5Cu00a0Tg%20DIC%5C%2Fyear.%20Additionally%2C%20sea%20ice%20export%20requires%20a%20compensating%20import%20of%20seawater%2C%20which%20carries%2048%5Cu00a0%5Cu00b1%5Cu00a011%5Cu00a0Tg%20DIC%5C%2Fyear%20into%20the%20gyre.%20Though%20often%20overlooked%2C%20these%20freshwater%20displacement%20effects%20are%20of%20leading%20order%20in%20the%20Weddell%20Gyre%20carbon%20budget%20in%20the%20state%20estimate%20and%20in%20regrouped%20box%5Cu2010inversion%20estimates%2C%20with%20implications%20for%20evaluating%20basin%5Cu2010scale%20carbon%20transport.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20ocean%20surrounding%20Antarctica%20plays%20a%20key%20role%20in%20the%20global%20carbon%20cycle%20because%20it%20is%20one%20of%20the%20few%20places%20where%20carbon%5Cu2010enriched%20abyssal%20waters%20can%20exchange%20with%20the%20atmosphere.%20Here%20we%20focus%20on%20the%20Weddell%20Gyre%20that%20covers%20the%20Atlantic%20sector%20poleward%20of%2060%5Cu00b0S%3B%20this%20region%20features%20enormous%20exchanges%20of%20freshwater%20through%20the%20surface%2C%20via%20sea%20ice%20that%20covers%20the%20region%20each%20winter%2C%20frequent%20precipitation%2C%20and%20land%20ice%20melting%20into%20the%20ocean.%20Using%20a%20model%20that%20assimilates%20available%20observations%2C%20we%20explore%20how%20this%20freshwater%20affects%20the%20region%27s%20ability%20to%20transport%20carbon%20between%20the%20atmosphere%20and%20deep%20ocean.%20Whereas%20previous%20studies%20have%20focused%20on%20how%20springtime%20sea%20ice%20melt%20dilutes%20surface%20ocean%20carbon%20concentrations%2C%20we%20emphasize%20that%20throughout%20the%20year%2C%20adding%20water%20with%20minimal%20carbon%20%28from%20rain%2C%20snow%2C%20or%20land%20ice%29%20to%20the%20ocean%20displaces%20carbon%5Cu2010rich%20seawater.%20Second%2C%20sea%20ice%20melt%20and%20formation%20alone%20do%20not%20displace%20seawater%2C%20but%20when%20sea%20ice%20flows%20out%20of%20the%20region%2C%20carbon%5Cu2010rich%20seawater%20responds%20by%20flowing%20in%20the%20opposite%20direction.%20These%20freshwater%20displacement%20effects%20are%20leading%20order%20terms%20of%20the%20regional%20carbon%20budget%20in%20our%20model%20analysis%20and%20in%20our%20reconsideration%20of%20past%20observational%20estimates.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Displacement%20of%20seawater%20by%20net%20precipitation%20and%20glacial%20melt%20is%20a%20leading%20order%20term%20in%20Weddell%20Gyre%20dissolved%20inorganic%20carbon%20%28DIC%29%20budget%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Evidence%20is%20provided%20by%20quantifying%20the%20DIC%20mass%20budget%20in%20Biogeochemical%20Southern%20Ocean%20State%20Estimate%20%28B%5Cu2010SOSE%29%20and%20regrouping%20published%20box%20inversion%20results%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20the%20B%5Cu2010SOSE%20mean%2C%20freshwater%20displaces%2075%5Cu00a0Tg%20DIC%5C%2Fyr%2C%20whereas%20sea%20ice%20export%20drives%20a%2048%5Cu00a0Tg%20DIC%5C%2Fyr%20lateral%20import%22%2C%22date%22%3A%222023-09-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023GL103952%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023GL103952%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22AR4GIKGB%22%5D%2C%22dateModified%22%3A%222023-10-24T23%3A01%3A14Z%22%7D%7D%2C%7B%22key%22%3A%228HE6L2UD%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222023-06-20%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESun%2C%20R.%2C%20Cobb%2C%20A.%2C%20Villas%20B%26%23xF4%3Bas%2C%20A.%20B.%2C%20Langodan%2C%20S.%2C%20Subramanian%2C%20A.%20C.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Cornuelle%2C%20B.%20D.%2C%20Miller%2C%20A.%20J.%2C%20Pathak%2C%20R.%2C%20%26amp%3B%20Hoteit%2C%20I.%20%282023%29.%20Waves%20in%20SKRIPS%3A%20WAVEWATCH%20III%20coupling%20implementation%20and%20a%20case%20study%20of%20Tropical%20Cyclone%20Mekunu.%20%3Ci%3EGeoscientific%20Model%20Development%3C%5C%2Fi%3E%2C%20%3Ci%3E16%3C%5C%2Fi%3E%2812%29%2C%203435%26%23x2013%3B3458.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fgmd-16-3435-2023%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fgmd-16-3435-2023%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Waves%20in%20SKRIPS%3A%20WAVEWATCH%20III%20coupling%20implementation%20and%20a%20case%20study%20of%20Tropical%20Cyclone%20Mekunu%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rui%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alison%22%2C%22lastName%22%3A%22Cobb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%20B.%22%2C%22lastName%22%3A%22Villas%20B%5Cu00f4as%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sabique%22%2C%22lastName%22%3A%22Langodan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arthur%20J.%22%2C%22lastName%22%3A%22Miller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Raju%22%2C%22lastName%22%3A%22Pathak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ibrahim%22%2C%22lastName%22%3A%22Hoteit%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20In%20this%20work%2C%20we%20integrated%20the%20WAVEWATCH%20III%20model%20into%20the%20regional%20coupled%20model%20SKRIPS%20%28Scripps%5Cu2013KAUST%20Regional%20Integrated%20Prediction%20System%29.%20The%20WAVEWATCH%20III%20model%20is%20implemented%20with%20flexibility%2C%20meaning%20the%20coupled%20system%20can%20run%20with%20or%20without%20the%20wave%20component.%20In%20our%20implementations%2C%20we%20considered%20the%20effect%20of%20Stokes%20drift%2C%20Langmuir%20turbulence%2C%20sea%20surface%20roughness%2C%20and%20wave-induced%20momentum%20fluxes.%20To%20demonstrate%20the%20impact%20of%20coupling%20we%20performed%20a%20case%20study%20using%20a%20series%20of%20coupled%20and%20uncoupled%20simulations%20of%20Tropical%20Cyclone%20Mekunu%2C%20which%20occurred%20in%20the%20Arabian%20Sea%20in%20May%5Cu00a02018.%20We%20examined%20the%20model%20skill%20in%20these%20simulations%20and%20further%20investigated%20the%20impact%20of%20Langmuir%20turbulence%20in%20the%20coupled%20system.%20Because%20of%20the%20chaotic%20nature%20of%20the%20atmosphere%2C%20we%20ran%20an%20ensemble%20of%2020%20members%20for%20each%20coupled%20and%20uncoupled%20experiment.%20We%20found%20that%20the%20characteristics%20of%20the%20tropical%20cyclone%20are%20not%20significantly%20different%20due%20to%20the%20effect%20of%20surface%20waves%20when%20using%20different%20parameterizations%2C%20but%20the%20coupled%20models%20better%20capture%20the%20minimum%20pressure%20and%20maximum%20wind%20speed%20compared%20with%20the%20benchmark%20stand-alone%20Weather%20Research%20and%20Forecasting%5Cu00a0%28WRF%29%20model.%20Moreover%2C%20in%20the%20region%20of%20the%20cold%20wake%2C%20when%20Langmuir%20turbulence%20is%20considered%20in%20the%20coupled%20system%2C%20the%20sea%20surface%20temperature%20is%20about%200.5%5Cu2009%5Cu2218C%20colder%2C%20and%20the%20mixed%20layer%20is%20about%2020%5Cu2009m%20deeper.%20This%20indicates%20the%20ocean%20model%20is%20sensitive%20to%20the%20parameterization%20of%20Langmuir%20turbulence%20in%20the%20coupled%20simulations.%22%2C%22date%22%3A%222023-06-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Fgmd-16-3435-2023%22%2C%22ISSN%22%3A%221991-9603%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fgmd.copernicus.org%5C%2Farticles%5C%2F16%5C%2F3435%5C%2F2023%5C%2F%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%22R4DENPGW%22%2C%22P6BBM9XF%22%2C%22NWLRM2I3%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A11%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22QSKIFGL8%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Luo%20et%20al.%22%2C%22parsedDate%22%3A%222023-03-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELuo%2C%20H.%2C%20Yang%2C%20Q.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Chen%2C%20D.%20%282023%29.%20A%20Balanced%20Atmospheric%20Ensemble%20Forcing%20for%20Sea%20Ice%20Modeling%20in%20Southern%20Ocean.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E50%3C%5C%2Fi%3E%285%29%2C%20e2022GL101139.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL101139%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL101139%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Balanced%20Atmospheric%20Ensemble%20Forcing%20for%20Sea%20Ice%20Modeling%20in%20Southern%20Ocean%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hao%22%2C%22lastName%22%3A%22Luo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qinghua%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dake%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-03-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022GL101139%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022GL101139%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-04-07T20%3A17%3A12Z%22%7D%7D%2C%7B%22key%22%3A%22FS9MMBDW%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lin%20et%20al.%22%2C%22parsedDate%22%3A%222023-02-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELin%2C%20Y.%2C%20Yang%2C%20Q.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Wu%2C%20X.%2C%20Tian-Kunze%2C%20X.%2C%20Kaleschke%2C%20L.%2C%20Yu%2C%20L.%2C%20%26amp%3B%20Chen%2C%20D.%20%282023%29.%20Transiting%20consolidated%20ice%20strongly%20influenced%20polynya%20area%20during%20a%20shrink%20event%20in%20Terra%20Nova%20Bay%20in%202013.%20%3Ci%3ECommunications%20Earth%20%26amp%3B%20Environment%3C%5C%2Fi%3E%2C%20%3Ci%3E4%3C%5C%2Fi%3E%281%29%2C%2054.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-023-00712-w%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-023-00712-w%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Transiting%20consolidated%20ice%20strongly%20influenced%20polynya%20area%20during%20a%20shrink%20event%20in%20Terra%20Nova%20Bay%20in%202013%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yichen%22%2C%22lastName%22%3A%22Lin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qinghua%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xingren%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiangshan%22%2C%22lastName%22%3A%22Tian-Kunze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Kaleschke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lejiang%22%2C%22lastName%22%3A%22Yu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dake%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Coastal%20polynyas%20in%20Antarctica%20are%20a%20window%20of%20air-sea%20energy%20exchange%20and%20an%20important%20source%20of%20Antarctic%20Bottom%20Water%20production.%20However%2C%20the%20relationship%20between%20the%20polynya%20area%20variation%20and%20the%20surrounding%20marine%20environment%20is%20yet%20to%20be%20fully%20understood.%20Here%20we%20quantify%20the%20influence%20of%20the%20volume%20of%20transiting%20consolidated%20ice%20on%20the%20Terra%20Nova%20Bay%20Polynya%20area%20with%20ice%20thickness%20data.%20Changes%20in%20transiting%20consolidated%20ice%20volume%20are%20shown%20to%20dominate%20the%20evolution%20and%20variation%20of%20the%20polynya%20during%20a%20typical%20polynya%20shrinking%20event%20that%20occurred%20between%2019%5Cu00a0June%20to%2003%5Cu00a0July%2C%202013%2C%20rather%20than%20katabatic%20winds%20or%20air%20temperature%2C%20which%20are%20commonly%20assumed%20to%20be%20the%20main%20drivers.%20Over%20the%20cold%20seasons%20from%202013%20to%202020%2C%20the%20Terra%20Nova%20Bay%20Polynya%20area%20is%20highly%20correlated%20to%20the%20transiting%20consolidated%20ice%20volume.%20We%20demonstrate%20that%20thick%20transiting%20ice%20limits%20the%20polynya%20area%20by%20blocking%20the%20newly-formed%20sea%20ice%20from%20leaving.%22%2C%22date%22%3A%222023-02-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs43247-023-00712-w%22%2C%22ISSN%22%3A%222662-4435%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs43247-023-00712-w%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-04-17T22%3A30%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22ZT55JXZP%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sarmiento%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESarmiento%2C%20J.%20L.%2C%20Johnson%2C%20K.%20S.%2C%20Arteaga%2C%20L.%20A.%2C%20Bushinsky%2C%20S.%20M.%2C%20Cullen%2C%20H.%20M.%2C%20Gray%2C%20A.%20R.%2C%20Hotinski%2C%20R.%20M.%2C%20Maurer%2C%20T.%20L.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Riser%2C%20S.%20C.%2C%20Russell%2C%20J.%20L.%2C%20Schofield%2C%20O.%20M.%2C%20%26amp%3B%20Talley%2C%20L.%20D.%20%282023%29.%20The%20Southern%20Ocean%20carbon%20and%20climate%20observations%20and%20modeling%20%28SOCCOM%29%20project%3A%20A%20review.%20%3Ci%3EProgress%20in%20Oceanography%3C%5C%2Fi%3E%2C%20%3Ci%3E219%3C%5C%2Fi%3E%2C%20103130.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.pocean.2023.103130%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.pocean.2023.103130%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Southern%20Ocean%20carbon%20and%20climate%20observations%20and%20modeling%20%28SOCCOM%29%20project%3A%20A%20review%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%20L.%22%2C%22lastName%22%3A%22Sarmiento%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kenneth%20S.%22%2C%22lastName%22%3A%22Johnson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lionel%20A.%22%2C%22lastName%22%3A%22Arteaga%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Seth%20M.%22%2C%22lastName%22%3A%22Bushinsky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Heidi%20M.%22%2C%22lastName%22%3A%22Cullen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alison%20R.%22%2C%22lastName%22%3A%22Gray%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roberta%20M.%22%2C%22lastName%22%3A%22Hotinski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tanya%20L.%22%2C%22lastName%22%3A%22Maurer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20C.%22%2C%22lastName%22%3A%22Riser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joellen%20L.%22%2C%22lastName%22%3A%22Russell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oscar%20M.%22%2C%22lastName%22%3A%22Schofield%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynne%20D.%22%2C%22lastName%22%3A%22Talley%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2212%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.pocean.2023.103130%22%2C%22ISSN%22%3A%2200796611%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0079661123001738%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22AR4GIKGB%22%5D%2C%22dateModified%22%3A%222023-12-22T22%3A05%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22KXXFDP9X%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hauck%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHauck%2C%20J.%2C%20Gregor%2C%20L.%2C%20Nissen%2C%20C.%2C%20Patara%2C%20L.%2C%20Hague%2C%20M.%2C%20Mongwe%2C%20P.%2C%20Bushinsky%2C%20S.%2C%20Doney%2C%20S.%20C.%2C%20Gruber%2C%20N.%2C%20Le%20Qu%26%23xE9%3Br%26%23xE9%3B%2C%20C.%2C%20Manizza%2C%20M.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Monteiro%2C%20P.%20M.%20S.%2C%20%26amp%3B%20Terhaar%2C%20J.%20%282023%29.%20The%20Southern%20Ocean%20Carbon%20Cycle%201985%26%23x2013%3B2018%3A%20Mean%2C%20Seasonal%20Cycle%2C%20Trends%2C%20and%20Storage.%20%3Ci%3EGlobal%20Biogeochemical%20Cycles%3C%5C%2Fi%3E%2C%20%3Ci%3E37%3C%5C%2Fi%3E%2811%29%2C%20e2023GB007848.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GB007848%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GB007848%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Southern%20Ocean%20Carbon%20Cycle%201985%5Cu20132018%3A%20Mean%2C%20Seasonal%20Cycle%2C%20Trends%2C%20and%20Storage%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Judith%22%2C%22lastName%22%3A%22Hauck%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luke%22%2C%22lastName%22%3A%22Gregor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cara%22%2C%22lastName%22%3A%22Nissen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lavinia%22%2C%22lastName%22%3A%22Patara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%22%2C%22lastName%22%3A%22Hague%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Precious%22%2C%22lastName%22%3A%22Mongwe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Seth%22%2C%22lastName%22%3A%22Bushinsky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20C.%22%2C%22lastName%22%3A%22Doney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Gruber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Corinne%22%2C%22lastName%22%3A%22Le%20Qu%5Cu00e9r%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manfredi%22%2C%22lastName%22%3A%22Manizza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pedro%20M.%20S.%22%2C%22lastName%22%3A%22Monteiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jens%22%2C%22lastName%22%3A%22Terhaar%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20assess%20the%20Southern%20Ocean%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20uptake%20%281985%5Cu20132018%29%20using%20data%20sets%20gathered%20in%20the%20REgional%20Carbon%20Cycle%20Assessment%20and%20Processes%20Project%20Phase%202.%20The%20Southern%20Ocean%20acted%20as%20a%20sink%20for%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20with%20close%20agreement%20between%20simulation%20results%20from%20global%20ocean%20biogeochemistry%20models%20%28GOBMs%2C%200.75%5Cu00a0%5Cu00b1%5Cu00a00.28%5Cu00a0PgC%5Cu00a0yr%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20p%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010observation%5Cu2010based%20products%20%280.73%5Cu00a0%5Cu00b1%5Cu00a00.07%5Cu00a0PgC%5Cu00a0yr%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20This%20sink%20is%20only%20half%20that%20reported%20by%20RECCAP1%20for%20the%20same%20region%20and%20timeframe.%20The%20present%5Cu2010day%20net%20uptake%20is%20to%20first%20order%20a%20response%20to%20rising%20atmospheric%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20driving%20large%20amounts%20of%20anthropogenic%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20ant%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20into%20the%20ocean%2C%20thereby%20overcompensating%20the%20loss%20of%20natural%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20to%20the%20atmosphere.%20An%20apparent%20knowledge%20gap%20is%20the%20increase%20of%20the%20sink%20since%202000%2C%20with%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20p%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010products%20suggesting%20a%20growth%20that%20is%20more%20than%20twice%20as%20strong%20and%20uncertain%20as%20that%20of%20GOBMs%20%280.26%5Cu00a0%5Cu00b1%5Cu00a00.06%20and%200.11%5Cu00a0%5Cu00b1%5Cu00a00.03%5Cu00a0Pg%5Cu00a0C%5Cu00a0yr%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0decade%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20respectively%29.%20This%20is%20despite%20nearly%20identical%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20p%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20trends%20in%20GOBMs%20and%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20p%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010products%20when%20both%20products%20are%20compared%20only%20at%20the%20locations%20where%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20p%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20was%20measured.%20Seasonal%20analyses%20revealed%20agreement%20in%20driving%20processes%20in%20winter%20with%20uncertainty%20in%20the%20magnitude%20of%20outgassing%2C%20whereas%20discrepancies%20are%20more%20fundamental%20in%20summer%2C%20when%20GOBMs%20exhibit%20difficulties%20in%20simulating%20the%20effects%20of%20the%20non%5Cu2010thermal%20processes%20of%20biology%20and%20mixing%5C%2Fcirculation.%20Ocean%20interior%20accumulation%20of%20C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20ant%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20points%20to%20an%20underestimate%20of%20C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20ant%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20uptake%20and%20storage%20in%20GOBMs.%20Future%20work%20needs%20to%20link%20surface%20fluxes%20and%20interior%20ocean%20transport%2C%20build%20long%20overdue%20systematic%20observation%20networks%20and%20push%20toward%20better%20process%20understanding%20of%20drivers%20of%20the%20carbon%20cycle.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20ocean%20takes%20up%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20from%20the%20atmosphere%20and%20thus%20slows%20climate%20change.%20The%20Southern%20Ocean%20has%20long%20known%20to%20be%20an%20important%20region%20for%20ocean%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20uptake.%20Here%2C%20we%20bring%20together%20all%20available%20data%20sets%20that%20estimate%20the%20Southern%20Ocean%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20uptake%2C%20from%20models%20that%20simulate%20ocean%20circulation%20and%20physical%20and%20biological%20processes%20that%20affect%20the%20ocean%20carbon%20cycle%2C%20from%20surface%20ocean%20observation%5Cu2010based%20estimates%2C%20from%20atmospheric%20transport%20models%20that%20ingest%20atmospheric%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20observations%2C%20and%20from%20interior%20ocean%20biogeochemical%20observations.%20With%20these%20data%20sets%2C%20we%20find%20good%20agreement%20on%20the%20mean%20Southern%20Ocean%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20uptake%201985%5Cu20132018%2C%20which%20is%2050%25%20smaller%20than%20previous%20estimates%20when%20recalculated%20for%20the%20time%20period%20and%20spatial%20extent%20used%20in%20the%20previous%20estimate.%20However%2C%20the%20estimates%20of%20the%20temporal%20change%20of%20the%20Southern%20Ocean%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20uptake%20differ%20by%20a%20factor%20of%20two%20and%20thus%20are%20not%20in%20agreement.%20We%20further%20highlight%20that%20knowledge%20gaps%20exist%20not%20only%20in%20winter%20when%20observations%20are%20typically%20rare%2C%20but%20equally%20in%20summer%20when%20biology%20plays%20a%20larger%20role%2C%20which%20is%20typically%20represented%20too%20simplistically%20in%20the%20dynamic%20models.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ocean%20models%20and%20machine%20learning%20estimates%20agree%20on%20the%20mean%20Southern%20Ocean%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20sink%2C%20but%20the%20trend%20since%202000%20differs%20by%20a%20factor%20of%20two%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20REgional%20Carbon%20Cycle%20Assessment%20and%20Processes%20Project%20Phase%202%20estimates%20a%2050%25%20smaller%20Southern%20Ocean%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20sink%20for%20the%20same%20region%20and%20timeframe%20as%20RECCAP1%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Large%20model%20spread%20in%20summer%20and%20winter%20indicates%20that%20sustained%20efforts%20are%20required%20to%20understand%20driving%20processes%20in%20all%20seasons%22%2C%22date%22%3A%2211%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023GB007848%22%2C%22ISSN%22%3A%220886-6236%2C%201944-9224%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023GB007848%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22TY2S6GRV%22%5D%2C%22dateModified%22%3A%222023-12-22T22%3A06%3A42Z%22%7D%7D%2C%7B%22key%22%3A%229V6L4GYB%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chamberlain%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChamberlain%2C%20P.%2C%20Talley%2C%20L.%20D.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Van%20Sebille%2C%20E.%2C%20Gille%2C%20S.%20T.%2C%20Tucker%2C%20T.%2C%20Scanderbeg%2C%20M.%2C%20%26amp%3B%20Robbins%2C%20P.%20%282023%29.%20Using%20Existing%20Argo%20Trajectories%20to%20Statistically%20Predict%20Future%20Float%20Positions%20with%20a%20Transition%20Matrix.%20%3Ci%3EJournal%20of%20Atmospheric%20and%20Oceanic%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E40%3C%5C%2Fi%3E%289%29%2C%201083%26%23x2013%3B1103.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-22-0070.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-22-0070.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Using%20Existing%20Argo%20Trajectories%20to%20Statistically%20Predict%20Future%20Float%20Positions%20with%20a%20Transition%20Matrix%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynne%20D.%22%2C%22lastName%22%3A%22Talley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Erik%22%2C%22lastName%22%3A%22Van%20Sebille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tyler%22%2C%22lastName%22%3A%22Tucker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Megan%22%2C%22lastName%22%3A%22Scanderbeg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pelle%22%2C%22lastName%22%3A%22Robbins%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Argo%20array%20provides%20nearly%204000%20temperature%20and%20salinity%20profiles%20of%20the%20top%202000%20m%20of%20the%20ocean%20every%2010%20days.%20Still%2C%20Argo%20floats%20will%20never%20be%20able%20to%20measure%20the%20ocean%20at%20all%20times%2C%20everywhere.%20Optimized%20Argo%20float%20distributions%20should%20match%20the%20spatial%20and%20temporal%20variability%20of%20the%20many%20societally%20important%20ocean%20features%20that%20they%20observe.%20Determining%20these%20distributions%20is%20challenging%20because%20float%20advection%20is%20difficult%20to%20predict.%20Using%20no%20external%20models%2C%20transition%20matrices%20based%20on%20existing%20Argo%20trajectories%20provide%20statistical%20inferences%20about%20Argo%20float%20motion.%20We%20use%20the%2024%20years%20of%20Argo%20locations%20to%20construct%20an%20optimal%20transition%20matrix%20that%20minimizes%20estimation%20bias%20and%20uncertainty.%20The%20optimal%20array%20is%20determined%20to%20have%20a%202%5Cu00b0%20%5Cu00d7%202%5Cu00b0%20spatial%20resolution%20with%20a%2090-day%20time%20step.%20We%20then%20use%20the%20transition%20matrix%20to%20predict%20the%20probability%20of%20future%20float%20locations%20of%20the%20core%20Argo%20array%2C%20the%20Global%20Biogeochemical%20Array%2C%20and%20the%20Southern%20Ocean%20Carbon%20and%20Climate%20Observations%20and%20Modeling%20%28SOCCOM%29%20array.%20A%20comparison%20of%20transition%20matrices%20derived%20from%20floats%20using%20Argos%20system%20and%20Iridium%20communication%20methods%20shows%20the%20impact%20of%20surface%20displacements%2C%20which%20is%20most%20apparent%20near%20the%20equator.%20Additionally%2C%20we%20demonstrate%20the%20utility%20of%20transition%20matrices%20for%20validating%20models%20by%20comparing%20the%20matrix%20derived%20from%20Argo%20floats%20with%20that%20derived%20from%20a%20particle%20release%20experiment%20in%20the%20Southern%20Ocean%20State%20Estimate%20%28SOSE%29.%22%2C%22date%22%3A%2209%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJTECH-D-22-0070.1%22%2C%22ISSN%22%3A%220739-0572%2C%201520-0426%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fatot%5C%2F40%5C%2F9%5C%2FJTECH-D-22-0070.1.xml%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22P6BBM9XF%22%2C%22AR4GIKGB%22%5D%2C%22dateModified%22%3A%222023-12-20T00%3A39%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22ID2LW2JD%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ellison%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EEllison%2C%20E.%2C%20Mashayek%2C%20A.%2C%20%26amp%3B%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20%282023%29.%20The%20Sensitivity%20of%20Southern%20Ocean%20Air%26%23x2010%3BSea%20Carbon%20Fluxes%20to%20Background%20Turbulent%20Diapycnal%20Mixing%20Variability.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%289%29%2C%20e2023JC019756.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC019756%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC019756%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Sensitivity%20of%20Southern%20Ocean%20Air%5Cu2010Sea%20Carbon%20Fluxes%20to%20Background%20Turbulent%20Diapycnal%20Mixing%20Variability%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elizabeth%22%2C%22lastName%22%3A%22Ellison%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ali%22%2C%22lastName%22%3A%22Mashayek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20Southern%20Ocean%20%28SO%29%20connects%20major%20ocean%20basins%20and%20hosts%20large%20air%5Cu2010sea%20carbon%20fluxes%20due%20to%20the%20resurfacing%20of%20deep%20nutrient%20and%20carbon%5Cu2010rich%20waters.%20While%20wind%5Cu2010induced%20turbulent%20mixing%20in%20the%20SO%20mixed%20layer%20is%20significant%20for%20air%5Cu2010sea%20fluxes%2C%20the%20importance%20of%20the%20orders%5Cu2010of%5Cu2010magnitude%20weaker%20background%20mixing%20below%20is%20less%20well%20understood.%20The%20direct%20impact%20of%20altering%20background%20mixing%20on%20tracers%2C%20as%20opposed%20to%20the%20response%20due%20to%20a%20longer%5Cu2010term%20change%20in%20large%5Cu2010scale%20ocean%20circulation%2C%20is%20also%20poorly%20studied.%20Topographically%20induced%20upward%20propagating%20lee%20waves%2C%20wind%5Cu2010induced%20downward%20propagating%20waves%20generated%20at%20the%20base%20of%20the%20mixed%20layer%2C%20shoaling%20of%20southward%20propagating%20internal%20tides%2C%20and%20turbulence%20under%20sea%20ice%20are%20among%20the%20processes%20known%20to%20induce%20upper%20ocean%20background%20turbulence%20but%20typically%20are%20not%20represented%20in%20models.%20Here%2C%20we%20show%20that%20abruptly%20altering%20the%20background%20mixing%20in%20the%20SO%20over%20a%20range%20of%20values%20typically%20used%20in%20climate%20models%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2013%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20can%20lead%20to%20a%20%5Cu223c70%25%20change%20in%20annual%20SO%20air%5Cu2010sea%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20fluxes%20in%20the%20first%20year%20of%20perturbations%2C%20and%20around%20a%20%5Cu223c40%25%20change%20in%20annual%20SO%20air%5Cu2010sea%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20fluxes%20over%20the%206%5Cu2010year%20duration%20of%20the%20experiment%2C%20with%20even%20greater%20changes%20on%20a%20seasonal%20timescale.%20This%20is%20primarily%20through%20altering%20the%20temperature%20and%20the%20dissolved%20inorganic%20carbon%20and%20alkalinity%20distribution%20in%20the%20surface%20water.%20Given%20the%20high%20spatiotemporal%20variability%20of%20processes%20that%20induce%20small%5Cu2010scale%20background%20mixing%2C%20this%20work%20demonstrates%20the%20importance%20of%20their%20representation%20in%20climate%20models%20for%20accurate%20simulation%20of%20global%20biogeochemical%20cycles.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Southern%20Ocean%20%28SO%29%20connects%20the%20world%27s%20major%20oceans%20and%20plays%20a%20crucial%20role%20in%20the%20exchange%20of%20carbon%20between%20the%20atmosphere%20and%20the%20ocean.%20Vertical%20mixing%20in%20the%20ocean%20is%20responsible%20for%20moving%20both%20natural%20dissolved%20carbon%20from%20deeper%20parts%20of%20the%20ocean%20to%20the%20surface%20where%20it%20can%20interact%20with%20the%20atmosphere%2C%20and%20anthropogenic%20carbon%20from%20the%20surface%20waters%20into%20the%20deep%20ocean.%20While%20we%20understand%20the%20impact%20of%20wind%5Cu2010induced%20mixing%20in%20the%20upper%20ocean%20layers%20on%20carbon%20exchange%2C%20we%20know%20less%20about%20the%20significance%20of%20mixing%20in%20the%20ocean%20interior.%20By%20using%20a%20model%20of%20the%20SO%2C%20we%20show%20that%20adjusting%20the%20strength%20of%20mixing%20in%20the%20ocean%20interior%20causes%20a%20significant%20alteration%20in%20the%20annual%20exchange%20of%20carbon%20between%20the%20ocean%20and%20the%20atmosphere.%20This%20study%20highlights%20the%20importance%20of%20accurately%20representing%20the%20strength%20of%20ocean%20interior%20mixing%20in%20climate%20models%20to%20improve%20our%20understanding%20of%20carbon%20exchange%20between%20the%20atmosphere%20and%20the%20ocean.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Total%20air%5Cu2010sea%20carbon%20fluxes%20in%20the%20Southern%20Ocean%20are%20altered%20by%20up%20to%2066%25%20annually%20by%20background%20mixing%20variations%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Resolving%20or%20skillfully%20parameterizing%20the%20small%5Cu2010scale%20turbulent%20mixing%20in%20the%20Southern%20Ocean%20is%20essential%20to%20model%20air%5Cu2010sea%20carbon%20fluxes%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Strong%20vertical%20gradients%20in%20tracer%20concentrations%20in%20the%20Southern%20Ocean%20increase%20the%20sensitivity%20to%20vertical%20mixing%20rates%22%2C%22date%22%3A%2209%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JC019756%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JC019756%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-10-25T17%3A21%3A04Z%22%7D%7D%2C%7B%22key%22%3A%22BNKW9BPQ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Geyer%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGeyer%2C%20F.%2C%20Gopalakrishnan%2C%20G.%2C%20Sagen%2C%20H.%2C%20Cornuelle%2C%20B.%2C%20Challet%2C%20F.%2C%20%26amp%3B%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20%282023%29.%20Data%20Assimilation%20of%20Range-%20and%20Depth-Averaged%20Sound%20Speed%20from%20Acoustic%20Tomography%20Measurements%20in%20Fram%20Strait.%20%3Ci%3EJournal%20of%20Atmospheric%20and%20Oceanic%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E40%3C%5C%2Fi%3E%289%29%2C%201023%26%23x2013%3B1036.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-22-0132.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-22-0132.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Data%20Assimilation%20of%20Range-%20and%20Depth-Averaged%20Sound%20Speed%20from%20Acoustic%20Tomography%20Measurements%20in%20Fram%20Strait%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Geyer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ganesh%22%2C%22lastName%22%3A%22Gopalakrishnan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanne%22%2C%22lastName%22%3A%22Sagen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fran%5Cu00e7ois%22%2C%22lastName%22%3A%22Challet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%202010%5Cu201312%20Acoustic%20Technology%20for%20Observing%20the%20Interior%20of%20the%20Arctic%20Ocean%20%28ACOBAR%29%20experiment%20provided%20acoustic%20tomography%20data%20along%20three%20167%5Cu2013301-km-long%20sections%20in%20Fram%20Strait%20between%20Greenland%20and%20Spitsbergen.%20Ocean%20sound%20speed%20data%20were%20assimilated%20into%20a%20regional%20numerical%20ocean%20model%20using%20the%20Massachusetts%20Institute%20of%20Technology%20General%20Circulation%20Model%5Cu2013Estimating%20the%20Circulation%20and%20Climate%20of%20the%20Ocean%20four-dimensional%20variational%20%28MITgcm-ECCO%204DVAR%29%20assimilation%20system.%20The%20resulting%20state%20estimate%20matched%20the%20assimilated%20sound%20speed%20time%20series%3B%20the%20root-mean-squared%20%28RMS%29%20error%20of%20the%20sound%20speed%20estimate%20%28%5Cu223c0.4%20m%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20is%20smaller%20than%20the%20uncertainty%20of%20the%20measurement%20%28%5Cu223c0.8%20m%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20Data%20assimilation%20improved%20modeled%20range-%20and%20depth-averaged%20ocean%20temperatures%20at%20the%2078%5Cu00b050%5Cu2032N%20oceanographic%20mooring%20section%20in%20Fram%20Strait.%20The%20RMS%20error%20of%20the%20state%20estimate%20%280.21%5Cu00b0C%29%20is%20comparable%20to%20the%20uncertainty%20of%20the%20interpolated%20mooring%20section%20%280.23%5Cu00b0C%29.%20Lack%20of%20depth%20information%20in%20the%20assimilated%20ocean%20sound%20speed%20measurements%20caused%20an%20increased%20temperature%20bias%20in%20the%20upper%20ocean%20%280%5Cu2013500%20m%29.%20The%20correlations%20with%20the%20mooring%20section%20were%20not%20improved%20as%20short-term%20variations%20in%20the%20mooring%20measurements%20and%20the%20ocean%20state%20estimate%20do%20not%20always%20coincide%20in%20time.%20This%20is%20likely%20due%20to%20the%20small-scale%20eddying%20and%20nonlinearity%20of%20the%20ocean%20circulation%20in%20Fram%20Strait.%20Furthermore%2C%20the%20horizontal%20resolution%20of%20the%20state%20estimate%20%284.5%20km%29%20is%20eddy%20permitting%2C%20rather%20than%20eddy%20resolving.%20Thus%2C%20the%20state%20estimate%20cannot%20represent%20the%20full%20ocean%20dynamics%20of%20the%20region.%20This%20study%20is%20the%20first%20to%20demonstrate%20the%20usefulness%20of%20large-scale%20acoustic%20measurements%20for%20improving%20ocean%20state%20estimates%20at%20high%20latitudes.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Acoustic%20tomography%20measurements%20allow%20one%20to%20observe%20ocean%20temperature%20in%20large%20ocean%20volumes%20under%20the%20Arctic%20sea%20ice%20by%20measuring%20sound%20speed%2C%20which%20is%20hard%20to%20synoptically%20observe%20by%20other%20methods.%20This%20study%20has%20established%20methods%20for%20assimilation%20of%20depth-%20and%20range-averaged%20ocean%20sound%20speed%20from%20an%20acoustic%20tomography%20experiment%20in%20Fram%20Strait.%20For%20the%20first%20time%2C%20a%202-yr%20time%20series%20of%20ocean%20sound%20from%20acoustic%20tomography%20has%20been%20assimilated%20into%20an%20ocean%20state%20estimate.%20The%20results%20highlight%20the%20use%20of%20ocean%20tomography%20in%20ice-covered%20regions%20to%20improve%20state%20estimates%20of%20ocean%20temperature.%22%2C%22date%22%3A%2209%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJTECH-D-22-0132.1%22%2C%22ISSN%22%3A%220739-0572%2C%201520-0426%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fatot%5C%2F40%5C%2F9%5C%2FJTECH-D-22-0132.1.xml%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%22784978NX%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-10-20T18%3A03%3A51Z%22%7D%7D%2C%7B%22key%22%3A%22Q2EC3FF8%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Verdy%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EVerdy%2C%20A.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Cornuelle%2C%20B.%20D.%2C%20%26amp%3B%20Subramanian%2C%20A.%20C.%20%282023%29.%20Balancing%20Volume%2C%20Temperature%2C%20and%20Salinity%20Budgets%20During%202014%26%23x2013%3B2018%20in%20the%20Tropical%20Pacific%20Ocean%20State%20Estimate.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%287%29%2C%20e2022JC019576.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC019576%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC019576%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Balancing%20Volume%2C%20Temperature%2C%20and%20Salinity%20Budgets%20During%202014%5Cu20132018%20in%20the%20Tropical%20Pacific%20Ocean%20State%20Estimate%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ariane%22%2C%22lastName%22%3A%22Verdy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20A%20state%20estimate%20of%20the%20tropical%20Pacific%20Ocean%20is%20used%20to%20analyze%20regional%20volume%2C%20temperature%2C%20and%20salinity%20budgets%20during%202014%5Cu20132018.%20The%20simulated%20ocean%20state%20is%20constrained%20by%20both%20model%20dynamics%20and%20assimilated%20observations.%20Comparisons%20with%20independent%20mooring%20data%20show%20that%20the%20state%20estimate%20is%20consistent%20with%20the%20observed%20variability%20in%20temperature%20and%20velocity.%20Budgets%20are%20analyzed%20between%205%5Cu00b0S%20and%205%5Cu00b0N%20in%20the%20upper%20300%5Cu00a0m%2C%20inside%20a%20box%20defined%20to%20represent%20the%20central%20and%20eastern%20equatorial%20Pacific.%20Transports%20through%20the%20faces%20of%20this%20box%20are%20quantified%20to%20understand%20the%20processes%20responsible%20for%20variability%20in%20box%5Cu2010mean%20properties.%20Vertical%20mixing%20across%20300%5Cu00a0m%20is%20negligible%3B%20temperature%20and%20salinity%20tendencies%20are%20balanced%20by%20surface%20fluxes%20and%20advective%20divergence%2C%20which%20is%20decomposed%20into%20geostrophic%20and%20ageostrophic%20components.%20The%20onset%20and%20recovery%20of%20the%202015%5C%2F2016%20El%20Ni%5Cu00f1o%20event%20is%20found%20to%20be%20dominated%20by%20anomalous%20surface%20fluxes%20and%20horizontal%20advection.%20During%20the%20onset%20phase%2C%20weaker%20trade%20winds%20cause%20the%20shallow%20meridional%20overturning%20circulation%20to%20slow%20down%2C%20which%20reduces%20the%20poleward%20transport%20of%20heat%20and%20leads%20to%20upper%20ocean%20warming.%20Anomalous%20precipitation%20and%20advection%20of%20fresh%20water%20from%20the%20western%20Pacific%20drive%20the%20net%20freshening%20of%20the%20region.%20Relaxation%20from%20El%20Ni%5Cu00f1o%20conditions%20is%20dominated%20by%20wind%5Cu2010driven%20meridional%20advection%20at%205%5Cu00b0N.%20As%20the%20meridional%20advection%20regains%20strength%2C%20Ekman%20advection%20efficiently%20exports%20the%20warm%2C%20fresh%20surface%20water%20out%20of%20the%20equatorial%20region.%20Quantifying%20the%20heat%20and%20salt%20transport%20changes%20in%20response%20to%20wind%20variability%20strengthens%20our%20understanding%20of%20global%20ocean%20heat%20transport.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20We%20have%20combined%20observations%20and%20an%20ocean%20model%20to%20produce%20an%20estimate%20of%20the%20tropical%20Pacific%20Ocean%20properties.%20Of%20particular%20interest%20are%20changes%20to%20the%20upper%5Cu2010ocean%20temperature%20and%20salinity%20over%20the%20period%202014%5Cu20132018.%20The%20largest%20changes%20occur%20in%20the%20central%20and%20eastern%20equatorial%20Pacific%2C%20and%20to%20diagnose%20the%20causes%20we%20define%20an%20analysis%20box%20representative%20of%20that%20region.%20Transports%20through%20five%20faces%20of%20this%20box%20%28the%20sixth%20face%20is%20a%20land%20boundary%29%20are%20diagnosed%20to%20understand%20the%20processes%20responsible%20for%20variability%20in%20box%5Cu2010average%20properties.%20We%20examine%20the%20cooling%20and%20freshening%20that%20occurs%20during%20the%20El%20Ni%5Cu00f1o%20event%20of%202015%5C%2F2016.%20The%20region%20is%20typically%20characterized%20by%20a%20near%20surface%20poleward%20flow%20away%20from%20the%20equator%20and%20a%20compensating%20flow%20toward%20the%20equator%20from%20below.%20This%20circulation%20is%20wind%20driven%20and%20slows%20down%20due%20to%20changing%20winds%20associated%20with%20the%20El%20Ni%5Cu00f1o.%20When%20the%20winds%20return%20to%20their%20average%20state%2C%20currents%20are%20re%5Cu2010invigorated%2C%20leading%20to%20the%20dissipation%20of%20El%20Ni%5Cu00f1o%20conditions.%20This%20paper%20focuses%20on%20determining%20the%20size%20and%20timing%20of%20these%20processes.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20data%5Cu2010assimilating%20model%20of%20tropical%20Pacific%20Ocean%20state%20is%20validated%20against%20independent%20mooring%20observations%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Temperature%2C%20salinity%2C%20and%20volume%20budgets%20are%20quantified%20during%20the%20onset%20and%20recovery%20of%20the%202015%5C%2F2016%20El%20Ni%5Cu00f1o%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Surface%20fluxes%20and%20horizontal%20advection%20are%20the%20main%20drivers%20of%20regional%20property%20changes%22%2C%22date%22%3A%2207%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JC019576%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JC019576%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%22P6BBM9XF%22%2C%229HSCH4RV%22%5D%2C%22dateModified%22%3A%222023-09-11T23%3A48%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22SX9QJ52H%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kuhn%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKuhn%2C%20A.%20M.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Dutkiewicz%2C%20S.%2C%20Jahn%2C%20O.%2C%20Clayton%2C%20S.%2C%20Rynearson%2C%20T.%2C%20%26amp%3B%20Barton%2C%20A.%20D.%20%282023%29.%20A%20Global%20Comparison%20of%20Marine%20Chlorophyll%20Variability%20Observed%20in%20Eulerian%20and%20Lagrangian%20Perspectives.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%287%29%2C%20e2023JC019801.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC019801%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JC019801%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Global%20Comparison%20of%20Marine%20Chlorophyll%20Variability%20Observed%20in%20Eulerian%20and%20Lagrangian%20Perspectives%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Angela%20M.%22%2C%22lastName%22%3A%22Kuhn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephanie%22%2C%22lastName%22%3A%22Dutkiewicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oliver%22%2C%22lastName%22%3A%22Jahn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Clayton%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tatiana%22%2C%22lastName%22%3A%22Rynearson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20D.%22%2C%22lastName%22%3A%22Barton%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Ocean%20chlorophyll%20time%20series%20exhibit%20temporal%20variability%20on%20a%20range%20of%20timescales%20due%20to%20environmental%20change%2C%20ecological%20interactions%2C%20dispersal%2C%20and%20other%20factors.%20The%20differences%20in%20chlorophyll%20temporal%20variability%20observed%20at%20stationary%20locations%20%28Eulerian%20perspective%29%20or%20following%20water%20parcels%20%28Lagrangian%20perspective%29%20are%20poorly%20understood.%20Here%20we%20contrasted%20the%20temporal%20variability%20of%20ocean%20chlorophyll%20in%20these%20two%20observational%20perspectives%2C%20using%20global%20drifter%20trajectories%20and%20satellite%20chlorophyll%20to%20generate%20matched%20pairs%20of%20Eulerian%5Cu2010Lagrangian%20time%20series.%20We%20found%20that%20for%20most%20ocean%20locations%2C%20chlorophyll%20variances%20measured%20in%20Eulerian%20and%20Lagrangian%20perspectives%20are%20not%20statistically%20different.%20In%20high%20latitude%20areas%2C%20the%20two%20perspectives%20may%20capture%20similar%20variability%20due%20to%20the%20large%20spatial%20scale%20of%20chlorophyll%20patches.%20In%20localized%20regions%20of%20the%20ocean%2C%20however%2C%20chlorophyll%20variability%20measured%20in%20these%20two%20perspectives%20may%20significantly%20differ.%20For%20example%2C%20in%20some%20western%20boundary%20currents%2C%20temporal%20chlorophyll%20variability%20in%20the%20Lagrangian%20perspective%20was%20greater%20than%20in%20the%20Eulerian%20perspective.%20In%20these%20cases%2C%20the%20observing%20platform%20travels%20rapidly%20across%20strong%20environmental%20gradients%20and%20constrained%20by%20the%20shelf%20topography%2C%20potentially%20leading%20to%20greater%20Lagrangian%20variability%20in%20chlorophyll.%20In%20contrast%2C%20we%20found%20that%20Eulerian%20chlorophyll%20variability%20exceeded%20Lagrangian%20variability%20in%20some%20key%20upwelling%20zones%20and%20boundary%20current%20extensions.%20In%20these%20cases%2C%20variability%20in%20the%20nutrient%20supply%20may%20generate%20intermittent%20chlorophyll%20anomalies%20in%20the%20Eulerian%20perspective%2C%20while%20the%20Lagrangian%20perspective%20sees%20the%20transport%20of%20such%20anomalies%20off%5Cu2010shore.%20These%20findings%20aid%20with%20the%20interpretation%20of%20chlorophyll%20time%20series%20from%20different%20sampling%20methodologies%2C%20inform%20observational%20network%20design%2C%20and%20guide%20validation%20of%20marine%20ecosystem%20models.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20differences%20in%20phytoplankton%20variability%20through%20time%20observed%20at%20fixed%20locations%20%28Eulerian%20perspective%29%20or%20following%20water%20parcels%20%28Lagrangian%20perspective%29%20are%20poorly%20understood.%20We%20created%20a%20large%20set%20of%20satellite%20chlorophyll%20matched%20time%20series%20pairs%20in%20the%20Eulerian%20and%20Lagrangian%20perspective%2C%20using%20global%20drifter%20trajectories%20as%20an%20approximation%20of%20how%20surface%20ocean%20currents%20move.%20We%20found%20that%20for%20most%20ocean%20locations%2C%20chlorophyll%20variability%20measured%20in%20Eulerian%20and%20Lagrangian%20perspectives%20is%20not%20different.%20In%20high%20latitude%20zones%2C%20chlorophyll%20appears%20to%20vary%20similarly%20over%20large%20areas.%20However%2C%20in%20localized%20regions%20of%20the%20ocean%2C%20such%20as%20western%20boundary%20currents%20and%20upwelling%20regions%2C%20chlorophyll%20variability%20in%20these%20two%20perspectives%20may%20significantly%20differ.%20The%20causes%20are%20linked%20to%20the%20specific%20ocean%20dynamics%20of%20each%20area.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20For%20most%20ocean%20locations%2C%20chlorophyll%20variances%20measured%20in%20Eulerian%20and%20Lagrangian%20perspectives%20are%20not%20statistically%20different%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20some%20western%20boundary%20currents%2C%20chlorophyll%20variance%20was%20greater%20in%20the%20Lagrangian%20perspective%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20some%20key%20upwelling%20zones%20and%20boundary%20current%20extensions%2C%20chlorophyll%20variance%20was%20greater%20in%20the%20Eulerian%20perspective%22%2C%22date%22%3A%2207%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JC019801%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JC019801%22%2C%22collections%22%3A%5B%22WQ3JHP4G%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-09-07T21%3A55%3A09Z%22%7D%7D%2C%7B%22key%22%3A%22WU4XU4FH%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Narayanan%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENarayanan%2C%20A.%2C%20Gille%2C%20S.%20T.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Du%20Plessis%2C%20M.%20D.%2C%20Murali%2C%20K.%2C%20%26amp%3B%20Roquet%2C%20F.%20%282023%29.%20Zonal%20Distribution%20of%20Circumpolar%20Deep%20Water%20Transformation%20Rates%20and%20Its%20Relation%20to%20Heat%20Content%20on%20Antarctic%20Shelves.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%286%29%2C%20e2022JC019310.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC019310%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC019310%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Zonal%20Distribution%20of%20Circumpolar%20Deep%20Water%20Transformation%20Rates%20and%20Its%20Relation%20to%20Heat%20Content%20on%20Antarctic%20Shelves%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aditya%22%2C%22lastName%22%3A%22Narayanan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marcel%20D.%22%2C%22lastName%22%3A%22Du%20Plessis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Murali%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabien%22%2C%22lastName%22%3A%22Roquet%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2206%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JC019310%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JC019310%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222023-06-23T16%3A32%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22VBK3ZVDJ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mazloff%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Verdy%2C%20A.%2C%20Gille%2C%20S.%20T.%2C%20Johnson%2C%20K.%20S.%2C%20Cornuelle%2C%20B.%20D.%2C%20%26amp%3B%20Sarmiento%2C%20J.%20%282023%29.%20Southern%20Ocean%20Acidification%20Revealed%20by%20Biogeochemical%26%23x2010%3BArgo%20Floats.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%285%29%2C%20e2022JC019530.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC019530%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC019530%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Southern%20Ocean%20Acidification%20Revealed%20by%20Biogeochemical%5Cu2010Argo%20Floats%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ariane%22%2C%22lastName%22%3A%22Verdy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kenneth%20S.%22%2C%22lastName%22%3A%22Johnson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Sarmiento%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2205%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JC019530%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JC019530%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22TFFGCZNI%22%2C%22P6BBM9XF%22%2C%229HSCH4RV%22%5D%2C%22dateModified%22%3A%222023-07-17T22%3A39%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22TJSGSCBN%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rousselet%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERousselet%2C%20L.%2C%20Cessi%2C%20P.%2C%20%26amp%3B%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%20%282023%29.%20What%20Controls%20the%20Partition%20between%20the%20Cold%20and%20Warm%20Routes%20in%20the%20Meridional%20Overturning%20Circulation%3F%20%3Ci%3EJournal%20of%20Physical%20Oceanography%3C%5C%2Fi%3E%2C%20%3Ci%3E53%3C%5C%2Fi%3E%281%29%2C%20215%26%23x2013%3B233.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-21-0308.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-21-0308.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22What%20Controls%20the%20Partition%20between%20the%20Cold%20and%20Warm%20Routes%20in%20the%20Meridional%20Overturning%20Circulation%3F%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Louise%22%2C%22lastName%22%3A%22Rousselet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paola%22%2C%22lastName%22%3A%22Cessi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20origins%20of%20the%20upper%20limb%20of%20the%20Atlantic%20meridional%20overturning%20circulation%20and%20the%20partition%20among%20different%20routes%20has%20been%20quantified%20with%20models%20at%20eddy-permitting%20and%20one%20eddy-resolving%20model%20or%20with%20low-resolution%20models%20assimilating%20observations.%20Here%2C%20a%20step%20toward%20bridging%20this%20gap%20is%20taken%20by%20using%20the%20Southern%20Ocean%20State%20Estimate%20%28SOSE%29%20at%20the%20eddy-permitting%201%5C%2F6%5Cu00b0%20horizontal%20resolution%20to%20compute%20Lagrangian%20diagnostics%20from%20virtual%20particle%20trajectories%20advected%20between%206.7%5Cu00b0S%20and%20two%20meridional%20sections%3A%20one%20at%20Drake%20Passage%20%28cold%20route%29%20and%20the%20other%20from%20South%20Africa%20to%20Antarctica%20%28warm%20route%29.%20Our%20results%20agree%20with%20the%20prevailing%20concept%20attributing%20the%20largest%20transport%20contribution%20to%20the%20warm%20route%20with%2012.3%20Sv%20%2888%25%29%20%281%20Sv%20%5Cu2261%2010%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%206%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20compared%20with%201.7%20Sv%20%2812%25%29%20for%20the%20cold%20route.%20These%20results%20are%20compared%20with%20a%20similar%20Lagrangian%20experiment%20performed%20with%20the%20lower-resolution%20state%20estimate%20from%20Estimating%20the%20Circulation%20and%20Climate%20of%20the%20Ocean.%20Eulerian%20and%20Lagrangian%20means%20highlight%20an%20overall%20increase%20in%20the%20transport%20of%20the%20major%20South%20Atlantic%20currents%20with%20finer%20resolution%2C%20resulting%20in%20a%20relatively%20larger%20contribution%20from%20the%20cold%20route.%20In%20particular%2C%20the%20Malvinas%20Current%20to%20Antarctic%20Circumpolar%20Current%20%28MC%5C%2FACC%29%20ratio%20plays%20a%20more%20important%20role%20on%20the%20routes%20partition%20than%20the%20increased%20Agulhas%20Leakage.%20The%20relative%20influence%20of%20the%20mean%20flow%20versus%20the%20eddy%20flow%20on%20the%20routes%20partition%20is%20investigated%20by%20computing%20the%20mean%20and%20eddy%20kinetic%20energies%20and%20the%20Lagrangian-based%20eddy%20diffusivity.%20Lagrangian%20diffusivity%20estimates%20are%20largest%20in%20the%20Agulhas%20and%20Malvinas%20regions%20but%20advection%20by%20the%20mean%20flow%20dominates%20everywhere.%22%2C%22date%22%3A%2201%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJPO-D-21-0308.1%22%2C%22ISSN%22%3A%220022-3670%2C%201520-0485%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fphoc%5C%2F53%5C%2F1%5C%2FJPO-D-21-0308.1.xml%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22FT69G5ND%22%5D%2C%22dateModified%22%3A%222023-04-17T22%3A34%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22GECCCZRB%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Cerove%5Cu010dki%20et%20al.%22%2C%22parsedDate%22%3A%222022-08-01%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECerove%26%23x10D%3Bki%2C%20I.%2C%20Sun%2C%20R.%2C%20Bromwich%2C%20D.%20H.%2C%20Zou%2C%20X.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20%26amp%3B%20Wang%2C%20S.-H.%20%282022%29.%20Impact%20of%20downward%20longwave%20radiative%20deficits%20on%20Antarctic%20sea-ice%20extent%20predictability%20during%20the%20sea%20ice%20growth%20period.%20%3Ci%3EEnvironmental%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E17%3C%5C%2Fi%3E%288%29%2C%20084008.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1748-9326%5C%2Fac7d66%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1748-9326%5C%2Fac7d66%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impact%20of%20downward%20longwave%20radiative%20deficits%20on%20Antarctic%20sea-ice%20extent%20predictability%20during%20the%20sea%20ice%20growth%20period%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ivana%22%2C%22lastName%22%3A%22Cerove%5Cu010dki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rui%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20H%22%2C%22lastName%22%3A%22Bromwich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sheng-Hung%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Forecasting%20Antarctic%20atmospheric%2C%20oceanic%2C%20and%20sea%20ice%20conditions%20on%20subseasonal%20to%20seasonal%20scales%20remains%20a%20major%20challenge.%20During%20both%20the%20freezing%20and%20melting%20seasons%20current%20operational%20ensemble%20forecasting%20systems%20show%20a%20systematic%20overestimation%20of%20the%20Antarctic%20sea-ice%20edge%20location.%20The%20skill%20of%20sea%20ice%20cover%20prediction%20is%20closely%20related%20to%20the%20accuracy%20of%20cloud%20representation%20in%20models%2C%20as%20the%20two%20are%20strongly%20coupled%20by%20cloud%20radiative%20forcing.%20In%20particular%2C%20surface%20downward%20longwave%20radiation%20%28DLW%29%20deficits%20appear%20to%20be%20a%20common%20shortcoming%20in%20atmospheric%20models%20over%20the%20Southern%20Ocean.%20For%20example%2C%20a%20recent%20comparison%20of%20ECMWF%20reanalysis%205th%20generation%20%28ERA5%29%20global%20reanalysis%20with%20the%20observations%20from%20McMurdo%20Station%20revealed%20a%20year-round%20deficit%20in%20DLW%20of%20approximately%2050%20Wm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20marine%20air%20masses%20due%20to%20model%20shortages%20in%20supercooled%20cloud%20liquid%20water.%20A%20comparison%20with%20the%20surface%20DLW%20radiation%20observations%20from%20the%20Ocean%20Observatories%20Initiative%20mooring%20in%20the%20South%20Pacific%20at%2054.08%5Cu00b0%20S%2C%2089.67%5Cu00b0%20W%2C%20for%20the%20time%20period%20January%202016%5Cu2013November%202018%2C%20confirms%20approximately%2020%20Wm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20deficit%20in%20DLW%20in%20ERA5%20well%20north%20of%20the%20sea-ice%20edge.%20Using%20a%20regional%20ocean%20model%2C%20we%20show%20that%20when%20DLW%20is%20artificially%20increased%20by%2050%20Wm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20the%20simulation%20driven%20by%20ERA5%20atmospheric%20forcing%2C%20the%20predicted%20sea%20ice%20growth%20agrees%20much%20better%20with%20the%20observations.%20A%20wide%20variety%20of%20sensitivity%20tests%20show%20that%20the%20anomalously%20large%2C%20predicted%20sea-ice%20extent%20is%20not%20due%20to%20limitations%20in%20the%20ocean%20model%20and%20that%20by%20implication%20the%20cause%20resides%20with%20the%20atmospheric%20forcing.%22%2C%22date%22%3A%222022-08-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1748-9326%5C%2Fac7d66%22%2C%22ISSN%22%3A%221748-9326%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1748-9326%5C%2Fac7d66%22%2C%22collections%22%3A%5B%22AGXXAR6G%22%2C%22P6BBM9XF%22%2C%22NWLRM2I3%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A11%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22M8TSCS2C%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22White%20et%20al.%22%2C%22parsedDate%22%3A%222022-07-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWhite%2C%20M.%20E.%2C%20Rafter%2C%20P.%20A.%2C%20Stephens%2C%20B.%20M.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Wankel%2C%20S.%20D.%2C%20%26amp%3B%20Aluwihare%2C%20L.%20I.%20%282022%29.%20Stable%20isotopes%20of%20nitrate%20record%20effects%20of%20the%202015%26%23x2013%3B2016%20El%20Ni%26%23xF1%3Bo%20and%20diatom%20iron%20limitation%20on%20nitrogen%20cycling%20in%20the%20eastern%20North%20Pacific%20Ocean.%20%3Ci%3ELimnology%20and%20Oceanography%3C%5C%2Fi%3E%2C%20lno.12194.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Flno.12194%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Flno.12194%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Stable%20isotopes%20of%20nitrate%20record%20effects%20of%20the%202015%5Cu20132016%20El%20Ni%5Cu00f1o%20and%20diatom%20iron%20limitation%20on%20nitrogen%20cycling%20in%20the%20eastern%20North%20Pacific%20Ocean%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margot%20E.%22%2C%22lastName%22%3A%22White%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%20A.%22%2C%22lastName%22%3A%22Rafter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brandon%20M.%22%2C%22lastName%22%3A%22Stephens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20D.%22%2C%22lastName%22%3A%22Wankel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lihini%20I.%22%2C%22lastName%22%3A%22Aluwihare%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-07-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Flno.12194%22%2C%22ISSN%22%3A%220024-3590%2C%201939-5590%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Flno.12194%22%2C%22collections%22%3A%5B%22QIYZ9CQ7%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222022-08-15T20%3A57%3A44Z%22%7D%7D%2C%7B%22key%22%3A%223MP2CMQJ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Cai%20et%20al.%22%2C%22parsedDate%22%3A%222022-07-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECai%2C%20Y.%2C%20Chen%2C%20D.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Lian%2C%20T.%2C%20%26amp%3B%20Liu%2C%20X.%20%282022%29.%20Topographic%20Modulation%20of%20the%20Wind%20Stress%20Impact%20on%20Eddy%20Activity%20in%20the%20Southern%20Ocean.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E49%3C%5C%2Fi%3E%2813%29.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL097859%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL097859%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Topographic%20Modulation%20of%20the%20Wind%20Stress%20Impact%20on%20Eddy%20Activity%20in%20the%20Southern%20Ocean%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yongqing%22%2C%22lastName%22%3A%22Cai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dake%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tao%22%2C%22lastName%22%3A%22Lian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaohui%22%2C%22lastName%22%3A%22Liu%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-07-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022GL097859%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022GL097859%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222022-08-05T18%3A16%3A38Z%22%7D%7D%2C%7B%22key%22%3A%226TPUM4MS%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fern%5Cu00e1ndez%20Castro%20et%20al.%22%2C%22parsedDate%22%3A%222022-06-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFern%26%23xE1%3Bndez%20Castro%2C%20B.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Williams%2C%20R.%20G.%2C%20%26amp%3B%20Naveira%20Garabato%2C%20A.%20C.%20%282022%29.%20Subtropical%20Contribution%20to%20Sub%26%23x2010%3BAntarctic%20Mode%20Waters.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E49%3C%5C%2Fi%3E%2811%29.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021GL097560%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021GL097560%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Subtropical%20Contribution%20to%20Sub%5Cu2010Antarctic%20Mode%20Waters%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bieito%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez%20Castro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Richard%20G.%22%2C%22lastName%22%3A%22Williams%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%20C.%22%2C%22lastName%22%3A%22Naveira%20Garabato%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-06-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2021GL097560%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2021GL097560%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222022-07-13T19%3A23%3A34Z%22%7D%7D%2C%7B%22key%22%3A%222AFLSE83%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Trossman%20et%20al.%22%2C%22parsedDate%22%3A%222022-05%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETrossman%2C%20D.%20S.%2C%20Whalen%2C%20C.%20B.%2C%20Haine%2C%20T.%20W.%20N.%2C%20Waterhouse%2C%20A.%20F.%2C%20Nguyen%2C%20A.%20T.%2C%20Bigdeli%2C%20A.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20%26amp%3B%20Heimbach%2C%20P.%20%282022%29.%20Tracer%20and%20observationally%20derived%20constraints%20on%20diapycnal%20diffusivities%20in%20an%20ocean%20state%20estimate.%20%3Ci%3EOcean%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%283%29%2C%20729%26%23x2013%3B759.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fos-18-729-2022%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fos-18-729-2022%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tracer%20and%20observationally%20derived%20constraints%20on%20diapycnal%20diffusivities%20in%20an%20ocean%20state%20estimate%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20S.%22%2C%22lastName%22%3A%22Trossman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20B.%22%2C%22lastName%22%3A%22Whalen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20W.%20N.%22%2C%22lastName%22%3A%22Haine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20F.%22%2C%22lastName%22%3A%22Waterhouse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20T.%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Bigdeli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Heimbach%22%7D%5D%2C%22abstractNote%22%3A%22Use%20of%20an%20ocean%20parameter%20and%20state%20estimation%20framework%20-%20such%20as%20the%20Estimating%20the%20Circulation%20and%20Climate%20of%20the%20Ocean%20%28ECCO%29%20framework%20-%20could%20provide%20an%20opportunity%20to%20learn%20about%20the%20spatial%20distribution%20of%20the%20diapycnal%20diffusivity%20parameter%20%28kappa%28rho%29%29%20that%20observations%20alone%20cannot%20due%20to%20gaps%20in%20coverage.%20However%2C%20we%20show%20that%20the%20inclusion%20of%20misfits%20to%20observed%20physical%20variables%20-%20such%20as%20in%20situ%20temperature%2C%20salinity%2C%20and%20pressure%20-%20currently%20accounted%20for%20in%20ECCO%20is%20not%20sufficient%2C%20as%20kappa%28rho%29%20from%20ECCO%20does%20not%20agree%20closely%20with%20any%20observationally%20derived%20product.%20These%20observationally%20derived%20kappa%28rho%29%20products%20were%20inferred%20from%20microstructure%20measurements%2C%20derived%20from%20Argo%20and%20conductivity-temperature-depth%20%28CTD%29%20data%20using%20a%20strain-based%20parameterization%20of%20fine-scale%20hydrographic%20structure%2C%20or%20calculated%20from%20climatological%20and%20seafloor%20data%20using%20a%20parameterization%20of%20tidal%20mixing.%20The%20kappa%28rho%20%29products%20are%20in%20close%20agreement%20with%20one%20another%20but%20have%20both%20measurement%20and%20structural%20uncertainties%2C%20whereas%20tracers%20can%20have%20relatively%20small%20measurement%20uncertainties.%20With%20the%20ultimate%20goal%20being%20to%20jointly%20improve%20the%20ECCO%20state%20estimate%20and%20representation%20of%20kappa%28rho%29%20in%20ECCO%2C%20we%20investigate%20whether%20adjustments%20in%20kappa%28rho%29%20due%20to%20inclusion%20of%20misfits%20to%20a%20tracer%20-%20dissolved%20oxygen%20concentrations%20from%20an%20annual%20climatology%20-%20would%20be%20similar%20to%20those%20due%20to%20inclusion%20of%20misfits%20to%20observationally%20derived%20kappa%28rho%29%20products.%20We%20do%20this%20by%20performing%20sensitivity%20analyses%20with%20ECCO.%20We%20compare%20multiple%20adjoint%20sensitivity%20calculations%3A%20one%20configuration%20uses%20misfits%20to%20observationally%20derived%20kappa%28rho%29%2C%20and%20the%20other%20uses%20misfits%20to%20observed%20dissolved%20oxygen%20concentrations.%20We%20show%20that%20adjoint%20sensitivities%20of%20dissolved%20oxygen%20concentration%20misfits%20to%20the%20state%20estimate%27s%20control%20space%20typically%20direct%20kappa%28rho%29%20to%20improve%20relative%20to%20the%20observationally%20derived%20values.%20These%20results%20suggest%20that%20the%20inclusion%20of%20oxygen%20in%20ECCO%27s%20misfits%20will%20improve%20kappa%28rho%29%20in%20ECCO%2C%20particularly%20in%20%28sub%29tropical%20regions.%22%2C%22date%22%3A%222022%5C%2F05%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.5194%5C%2Fos-18-729-2022%22%2C%22ISSN%22%3A%221812-0784%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%222F3FBK29%22%5D%2C%22dateModified%22%3A%222022-07-14T15%3A40%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22SNQ2I69B%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Prend%20et%20al.%22%2C%22parsedDate%22%3A%222022-05%22%2C%22numChildren%22%3A6%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPrend%2C%20C.%20J.%2C%20Hunt%2C%20J.%20M.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Gille%2C%20S.%20T.%2C%20%26amp%3B%20Talley%2C%20L.%20D.%20%282022%29.%20Controls%20on%20the%20boundary%20between%20thermally%20and%20non-thermally%20driven%20pCO%282%29%20regimes%20in%20the%20South%20Pacific.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E49%3C%5C%2Fi%3E%289%29%2C%2011.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gl095797%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gl095797%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Controls%20on%20the%20boundary%20between%20thermally%20and%20non-thermally%20driven%20pCO%282%29%20regimes%20in%20the%20South%20Pacific%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20J.%22%2C%22lastName%22%3A%22Prend%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Hunt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20D.%22%2C%22lastName%22%3A%22Talley%22%7D%5D%2C%22abstractNote%22%3A%22Regional%20and%20temporal%20patterns%20of%20air-sea%20carbon%20exchange%20are%20strongly%20linked%20to%20the%20surface%20ocean%20partial%20pressure%20of%20carbon%20dioxide%20%28pCO%282%29%29%2C%20which%20varies%20with%20sea%20surface%20temperature%20%28SST%29%2C%20salinity%2C%20dissolved%20inorganic%20carbon%20%28DIC%29%2C%20and%20alkalinity.%20It%20is%20well-known%20that%20temperature%20controls%20the%20pCO%282%29%20seasonal%20cycle%20in%20the%20subtropics%2C%20whereas%20DIC%20dominates%20at%20high%20latitudes.%20The%20balance%20of%20mechanisms%20governing%20the%20boundary%20between%20these%20regimes%2C%20however%2C%20are%20not%20well%20characterized%20due%20to%20lack%20of%20year-round%20pCO%282%29%20data.%20Here%2C%20we%20use%20autonomous%20biogeochemical%20float%20measurements%20from%20the%20South%20Pacific%20to%20investigate%20the%20processes%20that%20control%20meridional%20variations%20in%20pCO%282%29%20seasonality.%20We%20find%20that%20the%20transition%20between%20pCO%282%29%20regimes%20is%20linked%20to%20the%20poleward%20decrease%20in%20SST%20seasonal%20cycle%20amplitude%2C%20which%20is%20closely%20associated%20with%20the%20northern%20boundary%20of%20deep%20winter%20mixed%20layers.%20Processes%20that%20determine%20the%20annual%20SST%20range%20are%2C%20therefore%2C%20central%20to%20the%20response%20of%20oceanic%20carbon%20uptake%20to%20anthropogenic%20forcing.%22%2C%22date%22%3A%222022%5C%2F05%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021gl095797%22%2C%22ISSN%22%3A%220094-8276%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22P6BBM9XF%22%2C%22AR4GIKGB%22%5D%2C%22dateModified%22%3A%222022-07-14T15%3A40%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22VTHAWR2R%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Arumi-Planas%20et%20al.%22%2C%22parsedDate%22%3A%222022-04%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EArumi-Planas%2C%20C.%2C%20Hernandez-Guerra%2C%20A.%2C%20Cainzos%2C%20V.%2C%20Velez-Belchi%2C%20P.%2C%20Farneti%2C%20R.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Mecking%2C%20S.%2C%20Rosso%2C%20I.%2C%20Chretien%2C%20L.%20M.%20S.%2C%20Speer%2C%20K.%20G.%2C%20%26amp%3B%20Talley%2C%20L.%20D.%20%282022%29.%20Variability%20in%20the%20meridional%20overturning%20circulation%20at%2032%20degrees%20S%20in%20the%20Pacific%20Ocean%20diagnosed%20by%20inverse%20box%20models.%20%3Ci%3EProgress%20in%20Oceanography%3C%5C%2Fi%3E%2C%20%3Ci%3E203%3C%5C%2Fi%3E%2C%2020.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.pocean.2022.102780%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.pocean.2022.102780%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Variability%20in%20the%20meridional%20overturning%20circulation%20at%2032%20degrees%20S%20in%20the%20Pacific%20Ocean%20diagnosed%20by%20inverse%20box%20models%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Arumi-Planas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Hernandez-Guerra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Cainzos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Velez-Belchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Farneti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Mecking%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Rosso%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20M.%20S.%22%2C%22lastName%22%3A%22Chretien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20G.%22%2C%22lastName%22%3A%22Speer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20D.%22%2C%22lastName%22%3A%22Talley%22%7D%5D%2C%22abstractNote%22%3A%22The%20meridional%20circulation%20and%20transport%20at%2032%20degrees%20S%20in%20the%20Pacific%20Ocean%20in%201992%20and%202017%20are%20compared%20with%20analogous%20data%20from%202003%20and%202009%20computed%20by%20Hernandez-Guerra%20and%20Talley%20%282016%29.%20The%20hydrographic%20data%20come%20from%20the%20GO-SHIP%20database%20and%20an%20inverse%20box%20model%20has%20been%20applied%20with%20similar%20constraints%20as%20in%20Hernandez-Guerra%20and%20Talley%20%282016%29.%20In%201992%2C%202003%20and%202017%20the%20pattern%20of%20the%20overturning%20streamfunction%20and%20circulation%20are%20similar%2C%20but%20in%202009%20the%20pattern%20of%20the%20circulation%20changes%20in%20the%20whole%20water%20column.%20The%20horizontal%20distribution%20of%20mass%20transports%20at%20all%20depths%20in%201992%20and%202017%20resembles%20the%20familiar%20shape%20of%20the%20%5C%22classical%20gyre%5C%22%20also%20observed%20in%202003%20and%20is%20notably%20different%20to%20the%20%5C%22bowed%20gyre%5C%22%20found%20in%202009.%20The%20hydrographic%20data%20have%20been%20compared%20with%20data%20obtained%20from%20the%20numerical%20modelling%20outputs%20of%20ECCO%2C%20SOSE%2C%20GLORYS%2C%20and%20MOM.%20Results%20show%20that%20none%20of%20these%20models%20properly%20represents%20the%20%5C%22bowed%20gyre%5C%22%20circulation%20in%202009%2C%20and%20this%20change%20in%20circulation%20pattern%20was%20not%20observed%20during%20the%20entire%20length%20of%20model%20simulations.%20Additionally%2C%20the%20East%20Australian%20Current%20in%20the%20western%20boundary%20presents%20higher%20mass%20transport%20in%20the%20hydrographic%20data%20than%20in%20any%20numerical%20modelling%20output.%20Its%20poleward%20mass%20transport%20ranges%20from%20-35.1%20%2B%5C%2F-%202.0%20Sv%20in%201992%20to%20-54.3%20%2B%5C%2F-%202.6%20Sv%20in%202003.%20Conversely%2C%20the%20Peru-Chile%20Current%20is%20well%20represented%20in%20models%20and%20presents%20an%20equatorward%20mass%20transport%20from%202.3%20%2B%5C%2F-%200.8%20Sv%20in%202009%20to%204.4%20%2B%5C%2F-%201.0%20Sv%20in%201992.%20Furthermore%2C%20the%20Peru-Chile%20Undercurrent%20presents%20a%20more%20intense%20poleward%20mass%20transport%20in%202009%20%28-3.8%20%2B%5C%2F-%201.2%20Sv%29.%20In%20addition%2C%20the%20temperature%20and%20freshwater%20transports%20in%201992%20%280.42%20%2B%5C%2F-%200.12%20PW%20and%200.26%20%2B%5C%2F-%200.08%20Sv%29%2C%202003%20%280.38%20%2B%5C%2F-%200.12%20PW%20and%200.25%20%2B%5C%2F-%200.02%20Sv%29%2C%20and%202017%20%280.42%20%2B%5C%2F-%200.12%20PW%20and%200.34%20%2B%5C%2F-%200.08%20Sv%29%20are%20similar%2C%20but%20significantly%20different%20from%20those%20in%202009%20%280.16%20%2B%5C%2F-%200.12%20PW%20and%200.50%20%2B%5C%2F-%200.03%20Sv%2C%20respectively%29.%20To%20clarify%20the%20causes%20of%20these%20different%20circulation%20schemes%2C%20a%20linear%20Rossby%20wave%20model%20is%20adopted%2C%20which%20includes%20the%20wind-stress%20curl%20variability%20as%20remote%20forcing%20and%20the%20response%20to%20sea%20surface%20height%20changes%20along%2030%20degrees%20S.%22%2C%22date%22%3A%222022%5C%2F04%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.pocean.2022.102780%22%2C%22ISSN%22%3A%220079-6611%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22AR4GIKGB%22%5D%2C%22dateModified%22%3A%222022-07-14T15%3A43%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22E77LDWZ7%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Carroll%20et%20al.%22%2C%22parsedDate%22%3A%222022-03%22%2C%22numChildren%22%3A6%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECarroll%2C%20D.%2C%20Menemenlis%2C%20D.%2C%20Dutkiewicz%2C%20S.%2C%20Lauderdale%2C%20J.%20M.%2C%20Adkins%2C%20J.%20F.%2C%20Bowman%2C%20K.%20W.%2C%20Brix%2C%20H.%2C%20Fenty%2C%20I.%2C%20Gierach%2C%20M.%20M.%2C%20Hill%2C%20C.%2C%20Jahn%2C%20O.%2C%20Landschutzer%2C%20P.%2C%20Manizza%2C%20M.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Miller%2C%20C.%20E.%2C%20Schimel%2C%20D.%20S.%2C%20Verdy%2C%20A.%2C%20Whitt%2C%20D.%20B.%2C%20%26amp%3B%20Zhang%2C%20H.%20%282022%29.%20Attribution%20of%20space-time%20variability%20in%20global-ocean%20dissolved%20inorganic%20carbon.%20%3Ci%3EGlobal%20Biogeochemical%20Cycles%3C%5C%2Fi%3E%2C%20%3Ci%3E36%3C%5C%2Fi%3E%283%29%2C%2024.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gb007162%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gb007162%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Attribution%20of%20space-time%20variability%20in%20global-ocean%20dissolved%20inorganic%20carbon%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Carroll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Menemenlis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Dutkiewicz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Lauderdale%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20F.%22%2C%22lastName%22%3A%22Adkins%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20W.%22%2C%22lastName%22%3A%22Bowman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Brix%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Fenty%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20M.%22%2C%22lastName%22%3A%22Gierach%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Hill%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Jahn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Landschutzer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Manizza%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20E.%22%2C%22lastName%22%3A%22Miller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20S.%22%2C%22lastName%22%3A%22Schimel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Verdy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20B.%22%2C%22lastName%22%3A%22Whitt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Zhang%22%7D%5D%2C%22abstractNote%22%3A%22The%20inventory%20and%20variability%20of%20oceanic%20dissolved%20inorganic%20carbon%20%28DIC%29%20is%20driven%20by%20the%20interplay%20of%20physical%2C%20chemical%2C%20and%20biological%20processes.%20Quantifying%20the%20spatiotemporal%20variability%20of%20these%20drivers%20is%20crucial%20for%20a%20mechanistic%20understanding%20of%20the%20ocean%20carbon%20sink%20and%20its%20future%20trajectory.%20Here%2C%20we%20use%20the%20Estimating%20the%20Circulation%20and%20Climate%20of%20the%20Ocean-Darwin%20ocean%20biogeochemistry%20state%20estimate%20to%20generate%20a%20global-ocean%2C%20data-constrained%20DIC%20budget%20and%20investigate%20how%20spatial%20and%20seasonal-to-interannual%20variability%20in%20three-dimensional%20circulation%2C%20air-sea%20CO2%20flux%2C%20and%20biological%20processes%20have%20modulated%20the%20ocean%20sink%20for%201995-2018.%20Our%20results%20demonstrate%20substantial%20compensation%20between%20budget%20terms%2C%20resulting%20in%20distinct%20upper-ocean%20carbon%20regimes.%20For%20example%2C%20boundary%20current%20regions%20have%20strong%20contributions%20from%20vertical%20diffusion%20while%20equatorial%20regions%20exhibit%20compensation%20between%20upwelling%20and%20biological%20processes.%20When%20integrated%20across%20the%20full%20ocean%20depth%2C%20the%2024-year%20DIC%20mass%20increase%20of%2064%20Pg%20C%20%282.7%20Pg%20C%20year%28-1%29%29%20primarily%20tracks%20the%20anthropogenic%20CO2%20growth%20rate%2C%20with%20biological%20processes%20providing%20a%20small%20contribution%20of%202%25%20%281.4%20Pg%20C%29.%20In%20the%20upper%20100%20m%2C%20which%20stores%20roughly%2013%25%20%288.1%20Pg%20C%29%20of%20the%20global%20increase%2C%20we%20find%20that%20circulation%20provides%20the%20largest%20DIC%20gain%20%286.3%20Pg%20C%20year%28-1%29%29%20and%20biological%20processes%20are%20the%20largest%20loss%20%288.6%20Pg%20C%20year%28-1%29%29.%20Interannual%20variability%20is%20dominated%20by%20vertical%20advection%20in%20equatorial%20regions%2C%20with%20the%201997-1998%20El%20Nino-Southern%20Oscillation%20causing%20the%20largest%20year-to-year%20change%20in%20upper-ocean%20DIC%20%282.1%20Pg%20C%29.%20Our%20results%20provide%20a%20novel%2C%20data-constrained%20framework%20for%20an%20improved%20mechanistic%20understanding%20of%20natural%20and%20anthropogenic%20perturbations%20to%20the%20ocean%20sink.%22%2C%22date%22%3A%222022%5C%2F03%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021gb007162%22%2C%22ISSN%22%3A%220886-6236%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%229HSCH4RV%22%2C%22TY2S6GRV%22%5D%2C%22dateModified%22%3A%222022-10-20T15%3A51%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22HTMQS8QH%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Boas%20et%20al.%22%2C%22parsedDate%22%3A%222022-02%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBoas%2C%20A.%20B.%20V.%2C%20Lenain%2C%20L.%2C%20Cornuelle%2C%20B.%20D.%2C%20Gille%2C%20S.%20T.%2C%20%26amp%3B%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%20%282022%29.%20A%20broadband%20view%20of%20the%20sea%20surface%20height%20wavenumber%20spectrum.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E49%3C%5C%2Fi%3E%284%29.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gl096699%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gl096699%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20broadband%20view%20of%20the%20sea%20surface%20height%20wavenumber%20spectrum%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20B.%20V.%22%2C%22lastName%22%3A%22Boas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Lenain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%5D%2C%22abstractNote%22%3A%22Airborne%20lidar%20altimetry%20can%20measure%20the%20sea%20surface%20height%20%28SSH%29%20over%20scales%20ranging%20from%20hundreds%20of%20kilometers%20to%20a%20few%20meters.%20Here%2C%20we%20analyze%20the%20spectrum%20of%20SSH%20observations%20collected%20during%20an%20airborne%20lidar%20campaign%20conducted%20off%20the%20California%20coast.%20We%20show%20that%20the%20variance%20in%20the%20surface%20wave%20band%20can%20be%20over%2020%20times%20larger%20than%20the%20variance%20at%20submesoscales%20and%20that%20the%20observed%20SSH%20variability%20is%20sensitive%20to%20the%20directionality%20of%20surface%20waves.%20Our%20results%20support%20the%20hypothesis%20that%20there%20is%20a%20spectral%20gap%20between%20meso-to-submesoscale%20motions%20and%20small-scale%20surface%20waves%20and%20also%20indicate%20that%20aliasing%20of%20surface%20waves%20into%20lower%20wavenumbers%20may%20complicate%20the%20interpretation%20of%20SSH%20spectra.%20These%20results%20highlight%20the%20importance%20of%20better%20understanding%20the%20contributions%20of%20different%20physics%20to%20the%20SSH%20variability%20and%20considering%20the%20SSH%20spectrum%20as%20a%20continuum%20in%20the%20context%20of%20future%20satellite%20altimetry%20missions.%22%2C%22date%22%3A%222022%5C%2F02%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1029%5C%2F2021gl096699%22%2C%22ISSN%22%3A%220094-8276%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22TFFGCZNI%22%2C%22P6BBM9XF%22%2C%22AESGNTM6%22%5D%2C%22dateModified%22%3A%222022-07-27T16%3A38%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22UUCRCL2Z%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222022-01%22%2C%22numChildren%22%3A8%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESun%2C%20R.%2C%20Boas%2C%20A.%20B.%20V.%2C%20Subramanian%2C%20A.%20C.%2C%20Cornuelle%2C%20B.%20D.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Miller%2C%20A.%20J.%2C%20Langodan%2C%20S.%2C%20%26amp%3B%20Hoteit%2C%20I.%20%282022%29.%20Focusing%20and%20defocusing%20of%20tropical%20cyclone%20generated%20waves%20by%20ocean%20current%20refraction.%20%3Ci%3EJournal%20of%20Geophysical%20Research-Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E127%3C%5C%2Fi%3E%281%29%2C%2013.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jc018112%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jc018112%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Focusing%20and%20defocusing%20of%20tropical%20cyclone%20generated%20waves%20by%20ocean%20current%20refraction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20B.%20V.%22%2C%22lastName%22%3A%22Boas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20J.%22%2C%22lastName%22%3A%22Miller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Langodan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Hoteit%22%7D%5D%2C%22abstractNote%22%3A%22Waves%20generated%20by%20tropical%20cyclones%20can%20have%20devastating%20effects%20on%20coastal%20regions.%20However%2C%20the%20role%20of%20ocean%20currents%20in%20modifying%20wave%20amplitudes%2C%20wavelengths%2C%20and%20directions%20is%20commonly%20overlooked%20in%20wave%20forecasts%2C%20despite%20the%20fact%20that%20these%20interactions%20can%20lead%20to%20extreme%20wave%20conditions.%20Here%2C%20we%20use%20satellite%20observations%20and%20wave%20modeling%20to%20quantify%20the%20effects%20of%20ocean%20currents%20on%20the%20surface%20waves%20generated%20during%20a%20tropical%20cyclone%20event%20in%20the%20Arabian%20Sea.%20As%20a%20case%20study%2C%20this%20paper%20documents%20beams%20of%20wave%20heights%20originating%20from%20the%20eye-wall%20of%20a%20tropical%20cyclone%20caused%20by%20current-induced%20refraction.%20Alternating%20regions%20of%20high%20and%20low%20wave%20heights%20in%20the%20model%20simulations%20are%20consistent%20with%20observations%20and%20extend%20for%20thousands%20of%20kilometers%20all%20the%20way%20to%20100%20m%20isobath.%20Our%20results%20highlight%20the%20importance%20of%20accounting%20for%20wave%20refraction%20by%20currents%20in%20order%20to%20accurately%20predict%20the%20impact%20of%20tropical%20cyclone%20generated%20waves%20on%20coastal%20regions.%20Plain%20Language%20Summary%20Waves%20generated%20by%20tropical%20cyclones%20can%20have%20devastating%20effects%20on%20coastal%20regions.%20Ocean%20currents%20can%20modify%20wave%20heights%20and%20lead%20to%20extreme%20wave%20conditions.%20Here%2C%20we%20use%20satellite%20observations%20and%20wave%20modeling%20to%20quantify%20the%20effects%20of%20ocean%20currents%20on%20the%20waves%20during%20a%20tropical%20cyclone%20event%20in%20the%20Arabian%20Sea.%20In%20this%20paper%2C%20we%20documented%20the%20coherent%20beams%20of%20wave%20heights%20originating%20from%20the%20%5C%22center%5C%22%20of%20a%20tropical%20cyclone%20caused%20by%20current-induced%20effects.%20Alternating%20regions%20of%20high%20and%20low%20wave%20heights%20in%20the%20model%20simulations%20are%20consistent%20with%20observations%20and%20extend%20for%20thousands%20of%20kilometers%20all%20the%20way%20to%20100%20m%20isobath.%20Our%20results%20highlight%20the%20importance%20of%20accounting%20for%20the%20currents%20in%20order%20to%20accurately%20predict%20the%20impact%20of%20tropical%20cyclone%20generated%20waves%20on%20coastal%20regions.%22%2C%22date%22%3A%222022%5C%2F01%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021jc018112%22%2C%22ISSN%22%3A%222169-9275%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%22R4DENPGW%22%2C%22P6BBM9XF%22%2C%22NWLRM2I3%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A11%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22VX8DIEE6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Johnson%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EJohnson%2C%20K.%20S.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Bif%2C%20M.%20B.%2C%20Takeshita%2C%20Y.%2C%20Jannasch%2C%20H.%20W.%2C%20Maurer%2C%20T.%20L.%2C%20Plant%2C%20J.%20N.%2C%20Verdy%2C%20A.%2C%20Walz%2C%20P.%20M.%2C%20Riser%2C%20S.%20C.%2C%20%26amp%3B%20Talley%2C%20L.%20D.%20%282022%29.%20Carbon%20to%20Nitrogen%20Uptake%20Ratios%20Observed%20Across%20the%20Southern%20Ocean%20by%20the%20SOCCOM%20Profiling%20Float%20Array.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E127%3C%5C%2Fi%3E%289%29.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC018859%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JC018859%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Carbon%20to%20Nitrogen%20Uptake%20Ratios%20Observed%20Across%20the%20Southern%20Ocean%20by%20the%20SOCCOM%20Profiling%20Float%20Array%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kenneth%20S.%22%2C%22lastName%22%3A%22Johnson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariana%20B.%22%2C%22lastName%22%3A%22Bif%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuichiro%22%2C%22lastName%22%3A%22Takeshita%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans%20W.%22%2C%22lastName%22%3A%22Jannasch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tanya%20L.%22%2C%22lastName%22%3A%22Maurer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joshua%20N.%22%2C%22lastName%22%3A%22Plant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ariane%22%2C%22lastName%22%3A%22Verdy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Walz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20C.%22%2C%22lastName%22%3A%22Riser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynne%20D.%22%2C%22lastName%22%3A%22Talley%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2209%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JC018859%22%2C%22ISSN%22%3A%222169-9275%2C%202169-9291%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JC018859%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22AR4GIKGB%22%2C%229HSCH4RV%22%5D%2C%22dateModified%22%3A%222022-09-19T23%3A00%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22IISCL3TW%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hoffman%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHoffman%2C%20L.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20Gille%2C%20S.%20T.%2C%20Giglio%2C%20D.%2C%20%26amp%3B%20Varadarajan%2C%20A.%20%282022%29.%20Ocean%20Surface%20Salinity%20Response%20to%20Atmospheric%20River%20Precipitation%20in%20the%20California%20Current%20System.%20%3Ci%3EJournal%20of%20Physical%20Oceanography%3C%5C%2Fi%3E%2C%20%3Ci%3E52%3C%5C%2Fi%3E%288%29%2C%201867%26%23x2013%3B1885.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-21-0272.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJPO-D-21-0272.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ocean%20Surface%20Salinity%20Response%20to%20Atmospheric%20River%20Precipitation%20in%20the%20California%20Current%20System%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lauren%22%2C%22lastName%22%3A%22Hoffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Donata%22%2C%22lastName%22%3A%22Giglio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aniruddh%22%2C%22lastName%22%3A%22Varadarajan%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20result%20in%20precipitation%20over%20land%20and%20ocean.%20Rainfall%20on%20the%20ocean%20can%20generate%20a%20buoyant%20layer%20of%20freshwater%20that%20impacts%20exchanges%20between%20the%20surface%20and%20the%20mixed%20layer.%20These%20%5Cu201cfresh%20lenses%5Cu201d%20are%20important%20for%20weather%20and%20climate%20because%20they%20may%20impact%20the%20ocean%20stratification%20at%20all%20time%20scales.%20Here%20we%20use%20in%20situ%20ocean%20data%2C%20collocated%20with%20AR%20events%2C%20and%20a%20one-dimensional%20configuration%20of%20a%20general%20circulation%20model%2C%20to%20investigate%20the%20impact%20of%20AR%20precipitation%20on%20surface%20ocean%20salinity%20in%20the%20California%20Current%20System%20%28CCS%29%20on%20seasonal%20and%20event-based%20time%20scales.%20We%20find%20that%20at%20coastal%20and%20onshore%20locations%20the%20CCS%20freshens%20through%20the%20rainy%20season%20due%20to%20AR%20events%2C%20and%20years%20with%20higher%20AR%20activity%20are%20associated%20with%20a%20stronger%20freshening%20signal.%20On%20shorter%20time%20scales%2C%20model%20simulations%20suggest%20that%20events%20characteristic%20of%20CCS%20ARs%20can%20produce%20salinity%20changes%20that%20are%20detectable%20by%20ocean%20instruments%20%28%5Cu22650.01%20psu%29.%20Here%2C%20the%20surface%20salinity%20change%20depends%20linearly%20on%20rain%20rate%20and%20inversely%20on%20wind%20speed.%20Higher%20wind%20speeds%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20U%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3E%208%20m%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20induce%20mixing%2C%20distributing%20freshwater%20inputs%20to%20depths%20greater%20than%2020%20m.%20Lower%20wind%20speeds%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20U%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2264%208%20m%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20allow%20freshwater%20lenses%20to%20remain%20at%20the%20surface.%20Results%20suggest%20that%20local%20precipitation%20is%20important%20in%20setting%20the%20freshwater%20seasonal%20cycle%20of%20the%20CCS%20and%20that%20the%20formation%20of%20freshwater%20lenses%20should%20be%20considered%20for%20identifying%20impacts%20of%20atmospheric%20variability%20on%20the%20upper%20ocean%20in%20the%20CCS%20on%20weather%20event%20time%20scales.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20produce%20large%20amounts%20of%20rainfall.%20The%20purpose%20of%20this%20study%20is%20to%20understand%20how%20this%20rain%20impacts%20the%20surface%20ocean%20in%20the%20California%20Current%20System%20on%20seasonal%20and%20event%20time%20scales.%20Our%20results%20show%20that%20a%20greater%20precipitation%20over%20the%20rainy%20season%20leads%20to%20a%20larger%20decrease%20in%20salinity%20over%20time.%20On%20shorter%20time%20scales%2C%20these%20atmospheric%20river%20precipitation%20events%20commonly%20produce%20a%20surface%20salinity%20response%20that%20is%20detectable%20by%20ocean%20instruments.%20This%20salinity%20response%20depends%20on%20the%20amount%20of%20rainfall%20and%20the%20wind%20speed.%20In%20general%2C%20higher%20wind%20speeds%20will%20cause%20the%20freshwater%20input%20from%20rain%20to%20mix%20deeper%2C%20while%20lower%20wind%20speeds%20will%20have%20reduced%20mixing%2C%20allowing%20a%20layer%20of%20freshwater%20to%20persist%20at%20the%20surface.%22%2C%22date%22%3A%2208%5C%2F2022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJPO-D-21-0272.1%22%2C%22ISSN%22%3A%220022-3670%2C%201520-0485%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fphoc%5C%2F52%5C%2F8%5C%2FJPO-D-21-0272.1.xml%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222022-08-31T22%3A05%3A53Z%22%7D%7D%2C%7B%22key%22%3A%22QSPX5BRR%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kachelein%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKachelein%2C%20L.%2C%20Cornuelle%2C%20B.%20D.%2C%20Gille%2C%20S.%20T.%2C%20%26amp%3B%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%20%282022%29.%20Harmonic%20Analysis%20of%20Non-Phase-Locked%20Tides%20with%20Red%20Noise%20Using%20the%20red_tide%20Package.%20%3Ci%3EJournal%20of%20Atmospheric%20and%20Oceanic%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E39%3C%5C%2Fi%3E%287%29%2C%201031%26%23x2013%3B1051.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-21-0034.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-21-0034.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Harmonic%20Analysis%20of%20Non-Phase-Locked%20Tides%20with%20Red%20Noise%20Using%20the%20red_tide%20Package%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luke%22%2C%22lastName%22%3A%22Kachelein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%20T.%22%2C%22lastName%22%3A%22Gille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20A%20novel%20tidal%20analysis%20package%20%28red_tide%29%20has%20been%20developed%20to%20characterize%20low-amplitude%20non-phase-locked%20tidal%20energy%20and%20dominant%20tidal%20peaks%20in%20noisy%2C%20irregularly%20sampled%2C%20or%20gap-prone%20time%20series.%20We%20recover%20tidal%20information%20by%20expanding%20conventional%20harmonic%20analysis%20to%20include%20prior%20information%20and%20assumptions%20about%20the%20statistics%20of%20a%20process%2C%20such%20as%20the%20assumption%20of%20a%20spectrally%20colored%20background%2C%20treated%20as%20nontidal%20noise.%20This%20is%20implemented%20using%20Bayesian%20maximum%20posterior%20estimation%20and%20assuming%20Gaussian%20prior%20distributions.%20We%20utilize%20a%20hierarchy%20of%20test%20cases%2C%20including%20synthetic%20data%20and%20observations%2C%20to%20evaluate%20this%20method%20and%20its%20relevance%20to%20analysis%20of%20data%20with%20a%20tidal%20component%20and%20an%20energetic%20nontidal%20background.%20Analysis%20of%20synthetic%20test%20cases%20shows%20that%20the%20methodology%20provides%20robust%20tidal%20estimates.%20When%20the%20background%20energy%20spectrum%20is%20nearly%20spectrally%20white%2C%20red_tide%20results%20replicate%20results%20from%20ordinary%20least%20squares%20%28OLS%29%20commonly%20used%20in%20other%20tidal%20packages.%20When%20background%20spectra%20are%20red%20%28a%20spectral%20slope%20of%20%5Cu22122%20or%20steeper%29%2C%20red_tide%5Cu2019s%20estimates%20represent%20a%20measurable%20improvement%20over%20OLS.%20The%20approach%20highlights%20the%20presence%20of%20tidal%20variability%20and%20low-amplitude%20constituents%20in%20observations%20by%20allowing%20arbitrarily%20configurable%20fitted%20frequencies%20and%20prior%20statistics%20that%20constrain%20solutions.%20These%20techniques%20have%20been%20implemented%20in%20MATLAB%20in%20order%20to%20analyze%20tidal%20data%20with%20non-phase-locked%20components%20and%20an%20energetic%20background%20that%20pose%20challenges%20to%20the%20commonly%20used%20OLS%20approach.%22%2C%22date%22%3A%2207%5C%2F2022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJTECH-D-21-0034.1%22%2C%22ISSN%22%3A%220739-0572%2C%201520-0426%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fatot%5C%2F39%5C%2F7%5C%2FJTECH-D-21-0034.1.xml%22%2C%22collections%22%3A%5B%22WQ4Y333C%22%2C%22TFFGCZNI%22%2C%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222022-08-31T21%3A02%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22TC9HB4GS%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Luo%20et%20al.%22%2C%22parsedDate%22%3A%222021-12%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELuo%2C%20H.%2C%20Yang%2C%20Q.%20H.%2C%20Mu%2C%20L.%20J.%2C%20Tian-Kunze%2C%20X.%2C%20Nerger%2C%20L.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%2C%20Kaleschke%2C%20L.%2C%20%26amp%3B%20Chen%2C%20D.%20K.%20%282021%29.%20DASSO%3A%20a%20data%20assimilation%20system%20for%20the%20Southern%20Ocean%20that%20utilizes%20both%20sea-ice%20concentration%20and%20thickness%20observations.%20%3Ci%3EJournal%20of%20Glaciology%3C%5C%2Fi%3E%2C%20%3Ci%3E67%3C%5C%2Fi%3E%28266%29%2C%201235%26%23x2013%3B1240.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjog.2021.57%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2Fjog.2021.57%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22DASSO%3A%20a%20data%20assimilation%20system%20for%20the%20Southern%20Ocean%20that%20utilizes%20both%20sea-ice%20concentration%20and%20thickness%20observations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Luo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Q.%20H.%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20J.%22%2C%22lastName%22%3A%22Mu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Tian-Kunze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Nerger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Kaleschke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20K.%22%2C%22lastName%22%3A%22Chen%22%7D%5D%2C%22abstractNote%22%3A%22To%20improve%20Antarctic%20sea-ice%20simulations%20and%20estimations%2C%20an%20ensemble-based%20Data%20Assimilation%20System%20for%20the%20Southern%20Ocean%20%28DASSO%29%20was%20developed%20based%20on%20a%20regional%20sea%20ice-ocean%20coupled%20model%2C%20which%20assimilates%20sea-ice%20thickness%20%28SIT%29%20together%20with%20sea-ice%20concentration%20%28SIC%29%20derived%20from%20satellites.%20To%20validate%20the%20performance%20of%20DASSO%2C%20experiments%20were%20conducted%20from%2015%20April%20to%2014%20October%202016.%20Generally%2C%20assimilating%20SIC%20and%20SIT%20can%20suppress%20the%20overestimation%20of%20sea%20ice%20in%20the%20model-free%20run.%20Besides%20considering%20uncertainties%20in%20the%20operational%20atmospheric%20forcing%20data%2C%20a%20covariance%20inflation%20procedure%20in%20data%20assimilation%20further%20improves%20the%20simulation%20of%20Antarctic%20sea%20ice%2C%20especially%20SIT.%20The%20results%20demonstrate%20the%20effectiveness%20of%20assimilating%20sea-ice%20observations%20in%20reconstructing%20the%20state%20of%20Antarctic%20sea%20ice%2C%20but%20also%20highlight%20the%20necessity%20of%20more%20reasonable%20error%20estimation%20for%20the%20background%20as%20well%20as%20the%20observation.%22%2C%22date%22%3A%222021%5C%2F12%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1017%5C%2Fjog.2021.57%22%2C%22ISSN%22%3A%220022-1430%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%5D%2C%22dateModified%22%3A%222022-06-22T18%3A34%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22YFJZHPV4%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Eddebbar%20et%20al.%22%2C%22parsedDate%22%3A%222021-11%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EEddebbar%2C%20Y.%20A.%2C%20Subramanian%2C%20A.%20C.%2C%20Whitt%2C%20D.%20B.%2C%20Long%2C%20M.%20C.%2C%20Verdy%2C%20A.%2C%20%3Cstrong%3EMazloff%3C%5C%2Fstrong%3E%2C%20M.%20R.%2C%20%26amp%3B%20Merrifield%2C%20M.%20A.%20%282021%29.%20Seasonal%20modulation%20of%20dissolved%20oxygen%20in%20the%20equatorial%20Pacific%20by%20tropical%20instability%20vortices.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E126%3C%5C%2Fi%3E%2811%29%2C%20e2021JC017567.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021JC017567%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021JC017567%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Seasonal%20modulation%20of%20dissolved%20oxygen%20in%20the%20equatorial%20Pacific%20by%20tropical%20instability%20vortices%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%20A.%22%2C%22lastName%22%3A%22Eddebbar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20B.%22%2C%22lastName%22%3A%22Whitt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20C.%22%2C%22lastName%22%3A%22Long%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Verdy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20A.%22%2C%22lastName%22%3A%22Merrifield%22%7D%5D%2C%22abstractNote%22%3A%22Tropical%20instability%20vortices%20%28TIVs%29%20have%20a%20major%20influence%20on%20the%20physics%20and%20biogeochemistry%20of%20the%20equatorial%20Pacific.%20Using%20an%20eddy-resolving%20configuration%20of%20the%20Community%20Earth%20System%20Model%20%28CESM-HR%29%20and%20Lagrangian%20particle%20tracking%2C%20we%20examine%20TIV%20impacts%20on%20the%20three-dimensional%20structure%20and%20variability%20of%20dissolved%20oxygen%20%28O2%29%20in%20the%20upper%20equatorial%20Pacific%20water%20column.%20In%20CESM-HR%2C%20the%20simulated%20generation%20and%20westward%20propagation%20of%20TIVs%20from%20boreal%20summer%20through%20winter%20lead%20to%20the%20seasonal%20oxygenation%20of%20the%20upper%20northern%20equatorial%20Pacific%2C%20exhibited%20as%20a%20deepening%20of%20hypoxic%20depth%20west%20of%20120%5Cu00b0W.%20TIV%20effects%20on%20the%20equatorial%20Pacific%20oxygen%20balance%20are%20dominated%20by%20eddy-advection%20and%20mixing%2C%20while%20indirect%20TIV%20effects%20on%20O2%20consumption%20play%20minor%20roles.%20These%20advective%20effects%20reflect%20the%20transient%20displacements%20of%20isopycnals%20by%20eddy%20pumping%20as%20well%20as%20vortex%20transport%20of%20oxygen%20by%20eddy%20trapping%2C%20stirring%2C%20and%20subduction.%20TIVs%20influence%20on%20the%20upper%20equatorial%20Pacific%20O2%20distribution%20and%20variability%20has%20important%20implications%20for%20understanding%20and%20modeling%20marine%20ecosystem%20dynamics%20and%20habitats%2C%20and%20should%20be%20taken%20into%20consideration%20in%20designing%20observation%20networks%20in%20this%20region.%22%2C%22date%22%3A%222021%5C%2F11%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1029%5C%2F2021JC017567%22%2C%22ISSN%22%3A%222169-9275%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22BJ844U2D%22%2C%229HSCH4RV%22%2C%22YZZ6KTR8%22%5D%2C%22dateModified%22%3A%222022-10-11T20%3A25%3A16Z%22%7D%7D%5D%7D
Dinh, A., Rignot, E., Mazloff, M., & Fenty, I. (2024). Modeling Ocean Heat Transport to the Grounding Lines of Pine Island, Thwaites, Smith, and Kohler Glaciers, West Antarctica. Geophysical Research Letters, 51(19), e2024GL110078. https://doi.org/10.1029/2024GL110078
Chu, W. U., Mazloff, M. R., Verdy, A., Purkey, S. G., & Cornuelle, B. D. (2024). Optimizing observational arrays for biogeochemistry in the tropical Pacific by estimating correlation lengths. Limnology and Oceanography: Methods, lom3.10641. https://doi.org/10.1002/lom3.10641
Barnard, A., Boss, E., Haëntjens, N., Orrico, C., Chamberlain, P., Frouin, R., Mazloff, M., & Tan, J. (2024). A float-based Ocean color vicarious calibration program. Frontiers in Remote Sensing, 5, 1373540. https://doi.org/10.3389/frsen.2024.1373540
Chamberlain, P., Frouin, R. J., Tan, J., Mazloff, M., Barnard, A., Boss, E., Haëntjens, N., & Orrico, C. (2024). Selecting HyperNav deployment sites for calibrating and validating PACE ocean color observations. Frontiers in Remote Sensing, 5, 1333851. https://doi.org/10.3389/frsen.2024.1333851
Barnard, A., Boss, E., Haëntjens, N., Orrico, C., Frouin, R., Tan, J., Klumpp, J., Dewey, M., Walter, D., Mazloff, M., & Chamberlain, P. (2024). Design and verification of a highly accurate in-situ hyperspectral radiometric measurement system (HyperNav). Frontiers in Remote Sensing, 5, 1369769. https://doi.org/10.3389/frsen.2024.1369769
Hsu, T.-Y., Mazloff, M. R., Gille, S. T., Freilich, M. A., Sun, R., & Cornuelle, B. D. (2024). Response of sea surface temperature to atmospheric rivers. Nature Communications, 15(1), 5018. https://doi.org/10.1038/s41467-024-48486-9
Narayanan, A., Roquet, F., Gille, S. T., Gülk, B., Mazloff, M. R., Silvano, A., & Naveira Garabato, A. C. (2024). Ekman-driven salt transport as a key mechanism for open-ocean polynya formation at Maud Rise. Science Advances, 10(18), eadj0777. https://doi.org/10.1126/sciadv.adj0777
Tan, J., Frouin, R., Häentjens, N., Barnard, A., Boss, E., Chamberlain, P., Mazloff, M., & Orrico, C. (2024). Reconstructing hyper-spectral downwelling irradiance from multi-spectral measurements. Frontiers in Remote Sensing, 5, 1335627. https://doi.org/10.3389/frsen.2024.1335627
Dinh, A., Rignot, E., Mazloff, M., & Fenty, I. (2024). Southern Ocean High‐Resolution (SOhi) Modeling Along the Antarctic Ice Sheet Periphery. Geophysical Research Letters, 51(3), e2023GL106377. https://doi.org/10.1029/2023GL106377
Shackelford, K., Demott, C. A., van Leeuwen, P. J., Mazloff, M. R., & Sun, R. (2024). A Cold Lid on a Warm Ocean: Indian Ocean Surface Rain Layers and Their Feedbacks to the Atmosphere. Journal of Geophysical Research-Atmospheres, 129(4), 22. https://doi.org/10.1029/2023jd039272
Prend, C. J., MacGilchrist, G. A., Manucharyan, G. E., Pang, R. Q., Moorman, R., Thompson, A. F., Griffies, S. M., Mazloff, M. R., Talley, L. D., & Gille, S. T. (2024). Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf. Communications Earth & Environment, 5(1), 47. https://doi.org/10.1038/s43247-024-01207-y
Ellison, E., Mazloff, M., & Mashayek, A. (2024). The Rapid Response of Southern Ocean Biological Productivity to Changes in Background Small Scale Turbulence. Journal of Geophysical Research: Oceans, 129(10), e2024JC021158. https://doi.org/10.1029/2024JC021158
Sun, R., Sanikommu, S., Subramanian, A. C., Mazloff, M. R., Cornuelle, B. D., Gopalakrishnan, G., Miller, A. J., & Hoteit, I. (2024). Enhanced regional ocean ensemble data assimilation through atmospheric coupling in the SKRIPS model. Ocean Modelling, 191, 102424. https://doi.org/10.1016/j.ocemod.2024.102424
Menezes, V. V., Robbins, P., Furey, H., & Mazloff, M. (2024). Deep Argo Observations of Antarctic Bottom Water in the Deep Fracture Zones of the Southwest Indian Ridge. Journal of Geophysical Research: Oceans, 129(7), e2024JC021165. https://doi.org/10.1029/2024JC021165
Kachelein, L., Gille, S. T., Mazloff, M. R., & Cornuelle, B. D. (2024). Characterizing Non‐Phase‐Locked Tidal Currents in the California Current System Using High‐Frequency Radar. Journal of Geophysical Research: Oceans, 129(7), e2023JC020340. https://doi.org/10.1029/2023JC020340
Tchonang, B. C., Archer, M. R., Gopalakrishnan, G., Cornuelle, B., Mazloff, M. R., Wang, J., & Fu, L.-L. (2024). Evaluation of a 4DVAR Assimilation System in the California Current at the SWOT Calibration/Validation Site. Journal of Atmospheric and Oceanic Technology, 41(6), 533–549. https://doi.org/10.1175/JTECH-D-23-0112.1
Eddebbar, Y. A., Whitt, D. B., Verdy, A., Mazloff, M. R., Subramanian, A. C., & Long, M. C. (2024). Eddy‐Mediated Turbulent Mixing of Oxygen in the Equatorial Pacific. Journal of Geophysical Research: Oceans, 129(3), e2023JC020588. https://doi.org/10.1029/2023JC020588
Tedesco, P. F., Baker, L. E., Naveira Garabato, A. C., Mazloff, M. R., Gille, S. T., Caulfield, C. P., & Mashayek, A. (2024). Spatiotemporal Characteristics of the Near-Surface Turbulent Cascade at the Submesoscale in the Drake Passage. Journal of Physical Oceanography, 54(1), 187–215. https://doi.org/10.1175/JPO-D-23-0108.1
Young, R., Merrifield, S., Anderson, M., Mazloff, M., & Terrill, E. (2024). A Greedy Depth-Seeking Behavior for Energy-Efficient Transits by an Autonomous Underwater Vehicle. IEEE Journal of Oceanic Engineering, 1–14. https://doi.org/10.1109/JOE.2024.3429610
Luo, H., Yang, Q., Mazloff, M., Nerger, L., & Chen, D. (2023). The Impacts of Optimizing Model‐Dependent Parameters on the Antarctic Sea Ice Data Assimilation. Geophysical Research Letters, 50(22), e2023GL105690. https://doi.org/10.1029/2023GL105690
Wei, H., Subramanian, A. C., Karnauskas, K. B., Du, D., Balmaseda, M. A., Sarojini, B. B., Vitart, F., DeMott, C. A., & Mazloff, M. R. (2023). The role of in situ ocean data assimilation in ECMWF subseasonal forecasts of sea‐surface temperature and mixed‐layer depth over the tropical Pacific ocean. Quarterly Journal of the Royal Meteorological Society, qj.4570. https://doi.org/10.1002/qj.4570
Taylor, B. A., MacGilchrist, G. A., Mazloff, M. R., & Talley, L. D. (2023). Freshwater Displacement Effect on the Weddell Gyre Carbon Budget. Geophysical Research Letters, 50(18), e2023GL103952. https://doi.org/10.1029/2023GL103952
Sun, R., Cobb, A., Villas Bôas, A. B., Langodan, S., Subramanian, A. C., Mazloff, M. R., Cornuelle, B. D., Miller, A. J., Pathak, R., & Hoteit, I. (2023). Waves in SKRIPS: WAVEWATCH III coupling implementation and a case study of Tropical Cyclone Mekunu. Geoscientific Model Development, 16(12), 3435–3458. https://doi.org/10.5194/gmd-16-3435-2023
Luo, H., Yang, Q., Mazloff, M., & Chen, D. (2023). A Balanced Atmospheric Ensemble Forcing for Sea Ice Modeling in Southern Ocean. Geophysical Research Letters, 50(5), e2022GL101139. https://doi.org/10.1029/2022GL101139
Lin, Y., Yang, Q., Mazloff, M., Wu, X., Tian-Kunze, X., Kaleschke, L., Yu, L., & Chen, D. (2023). Transiting consolidated ice strongly influenced polynya area during a shrink event in Terra Nova Bay in 2013. Communications Earth & Environment, 4(1), 54. https://doi.org/10.1038/s43247-023-00712-w
Sarmiento, J. L., Johnson, K. S., Arteaga, L. A., Bushinsky, S. M., Cullen, H. M., Gray, A. R., Hotinski, R. M., Maurer, T. L., Mazloff, M. R., Riser, S. C., Russell, J. L., Schofield, O. M., & Talley, L. D. (2023). The Southern Ocean carbon and climate observations and modeling (SOCCOM) project: A review. Progress in Oceanography, 219, 103130. https://doi.org/10.1016/j.pocean.2023.103130
Hauck, J., Gregor, L., Nissen, C., Patara, L., Hague, M., Mongwe, P., Bushinsky, S., Doney, S. C., Gruber, N., Le Quéré, C., Manizza, M., Mazloff, M., Monteiro, P. M. S., & Terhaar, J. (2023). The Southern Ocean Carbon Cycle 1985–2018: Mean, Seasonal Cycle, Trends, and Storage. Global Biogeochemical Cycles, 37(11), e2023GB007848. https://doi.org/10.1029/2023GB007848
Chamberlain, P., Talley, L. D., Mazloff, M., Van Sebille, E., Gille, S. T., Tucker, T., Scanderbeg, M., & Robbins, P. (2023). Using Existing Argo Trajectories to Statistically Predict Future Float Positions with a Transition Matrix. Journal of Atmospheric and Oceanic Technology, 40(9), 1083–1103. https://doi.org/10.1175/JTECH-D-22-0070.1
Ellison, E., Mashayek, A., & Mazloff, M. (2023). The Sensitivity of Southern Ocean Air‐Sea Carbon Fluxes to Background Turbulent Diapycnal Mixing Variability. Journal of Geophysical Research: Oceans, 128(9), e2023JC019756. https://doi.org/10.1029/2023JC019756
Geyer, F., Gopalakrishnan, G., Sagen, H., Cornuelle, B., Challet, F., & Mazloff, M. (2023). Data Assimilation of Range- and Depth-Averaged Sound Speed from Acoustic Tomography Measurements in Fram Strait. Journal of Atmospheric and Oceanic Technology, 40(9), 1023–1036. https://doi.org/10.1175/JTECH-D-22-0132.1
Verdy, A., Mazloff, M. R., Cornuelle, B. D., & Subramanian, A. C. (2023). Balancing Volume, Temperature, and Salinity Budgets During 2014–2018 in the Tropical Pacific Ocean State Estimate. Journal of Geophysical Research: Oceans, 128(7), e2022JC019576. https://doi.org/10.1029/2022JC019576
Kuhn, A. M., Mazloff, M., Dutkiewicz, S., Jahn, O., Clayton, S., Rynearson, T., & Barton, A. D. (2023). A Global Comparison of Marine Chlorophyll Variability Observed in Eulerian and Lagrangian Perspectives. Journal of Geophysical Research: Oceans, 128(7), e2023JC019801. https://doi.org/10.1029/2023JC019801
Narayanan, A., Gille, S. T., Mazloff, M. R., Du Plessis, M. D., Murali, K., & Roquet, F. (2023). Zonal Distribution of Circumpolar Deep Water Transformation Rates and Its Relation to Heat Content on Antarctic Shelves. Journal of Geophysical Research: Oceans, 128(6), e2022JC019310. https://doi.org/10.1029/2022JC019310
Mazloff, M. R., Verdy, A., Gille, S. T., Johnson, K. S., Cornuelle, B. D., & Sarmiento, J. (2023). Southern Ocean Acidification Revealed by Biogeochemical‐Argo Floats. Journal of Geophysical Research: Oceans, 128(5), e2022JC019530. https://doi.org/10.1029/2022JC019530
Rousselet, L., Cessi, P., & Mazloff, M. R. (2023). What Controls the Partition between the Cold and Warm Routes in the Meridional Overturning Circulation? Journal of Physical Oceanography, 53(1), 215–233. https://doi.org/10.1175/JPO-D-21-0308.1
Cerovečki, I., Sun, R., Bromwich, D. H., Zou, X., Mazloff, M. R., & Wang, S.-H. (2022). Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period. Environmental Research Letters, 17(8), 084008. https://doi.org/10.1088/1748-9326/ac7d66
White, M. E., Rafter, P. A., Stephens, B. M., Mazloff, M. R., Wankel, S. D., & Aluwihare, L. I. (2022). Stable isotopes of nitrate record effects of the 2015–2016 El Niño and diatom iron limitation on nitrogen cycling in the eastern North Pacific Ocean. Limnology and Oceanography, lno.12194. https://doi.org/10.1002/lno.12194
Cai, Y., Chen, D., Mazloff, M. R., Lian, T., & Liu, X. (2022). Topographic Modulation of the Wind Stress Impact on Eddy Activity in the Southern Ocean. Geophysical Research Letters, 49(13). https://doi.org/10.1029/2022GL097859
Fernández Castro, B., Mazloff, M., Williams, R. G., & Naveira Garabato, A. C. (2022). Subtropical Contribution to Sub‐Antarctic Mode Waters. Geophysical Research Letters, 49(11). https://doi.org/10.1029/2021GL097560
Trossman, D. S., Whalen, C. B., Haine, T. W. N., Waterhouse, A. F., Nguyen, A. T., Bigdeli, A., Mazloff, M., & Heimbach, P. (2022). Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate. Ocean Science, 18(3), 729–759. https://doi.org/10.5194/os-18-729-2022
Prend, C. J., Hunt, J. M., Mazloff, M. R., Gille, S. T., & Talley, L. D. (2022). Controls on the boundary between thermally and non-thermally driven pCO(2) regimes in the South Pacific. Geophysical Research Letters, 49(9), 11. https://doi.org/10.1029/2021gl095797
Arumi-Planas, C., Hernandez-Guerra, A., Cainzos, V., Velez-Belchi, P., Farneti, R., Mazloff, M. R., Mecking, S., Rosso, I., Chretien, L. M. S., Speer, K. G., & Talley, L. D. (2022). Variability in the meridional overturning circulation at 32 degrees S in the Pacific Ocean diagnosed by inverse box models. Progress in Oceanography, 203, 20. https://doi.org/10.1016/j.pocean.2022.102780
Carroll, D., Menemenlis, D., Dutkiewicz, S., Lauderdale, J. M., Adkins, J. F., Bowman, K. W., Brix, H., Fenty, I., Gierach, M. M., Hill, C., Jahn, O., Landschutzer, P., Manizza, M., Mazloff, M. R., Miller, C. E., Schimel, D. S., Verdy, A., Whitt, D. B., & Zhang, H. (2022). Attribution of space-time variability in global-ocean dissolved inorganic carbon. Global Biogeochemical Cycles, 36(3), 24. https://doi.org/10.1029/2021gb007162
Boas, A. B. V., Lenain, L., Cornuelle, B. D., Gille, S. T., & Mazloff, M. R. (2022). A broadband view of the sea surface height wavenumber spectrum. Geophysical Research Letters, 49(4). https://doi.org/10.1029/2021gl096699
Sun, R., Boas, A. B. V., Subramanian, A. C., Cornuelle, B. D., Mazloff, M. R., Miller, A. J., Langodan, S., & Hoteit, I. (2022). Focusing and defocusing of tropical cyclone generated waves by ocean current refraction. Journal of Geophysical Research-Oceans, 127(1), 13. https://doi.org/10.1029/2021jc018112
Johnson, K. S., Mazloff, M. R., Bif, M. B., Takeshita, Y., Jannasch, H. W., Maurer, T. L., Plant, J. N., Verdy, A., Walz, P. M., Riser, S. C., & Talley, L. D. (2022). Carbon to Nitrogen Uptake Ratios Observed Across the Southern Ocean by the SOCCOM Profiling Float Array. Journal of Geophysical Research: Oceans, 127(9). https://doi.org/10.1029/2022JC018859
Hoffman, L., Mazloff, M. R., Gille, S. T., Giglio, D., & Varadarajan, A. (2022). Ocean Surface Salinity Response to Atmospheric River Precipitation in the California Current System. Journal of Physical Oceanography, 52(8), 1867–1885. https://doi.org/10.1175/JPO-D-21-0272.1
Kachelein, L., Cornuelle, B. D., Gille, S. T., & Mazloff, M. R. (2022). Harmonic Analysis of Non-Phase-Locked Tides with Red Noise Using the red_tide Package. Journal of Atmospheric and Oceanic Technology, 39(7), 1031–1051. https://doi.org/10.1175/JTECH-D-21-0034.1
Luo, H., Yang, Q. H., Mu, L. J., Tian-Kunze, X., Nerger, L., Mazloff, M., Kaleschke, L., & Chen, D. K. (2021). DASSO: a data assimilation system for the Southern Ocean that utilizes both sea-ice concentration and thickness observations. Journal of Glaciology, 67(266), 1235–1240. https://doi.org/10.1017/jog.2021.57
Eddebbar, Y. A., Subramanian, A. C., Whitt, D. B., Long, M. C., Verdy, A., Mazloff, M. R., & Merrifield, M. A. (2021). Seasonal modulation of dissolved oxygen in the equatorial Pacific by tropical instability vortices. Journal of Geophysical Research: Oceans, 126(11), e2021JC017567. https://doi.org/10.1029/2021JC017567